Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Aboveground biomass in a post-mining forest succession in the Colombian Pacific
PDF
HTML
EPUB

How to Cite

Torres Torres, J. J., Quinto Mosquera , H. ., & Guerrero Machado, M. . (2024). Aboveground biomass in a post-mining forest succession in the Colombian Pacific. Revista De Biología Tropical, 72(1), e55276. https://doi.org/10.15517/rev.biol.trop.v72i1.55276

Abstract

Introduction: Mining is one of the main drivers of deforestation of tropical forests. This activity affects the storage of aboveground biomass of these ecosystems; therefore, their ability to contribute to the mitigation of global climate change. Objective: To assess the influence of soil properties on the aboveground biomass storage of post-mining forests in the Colombian Pacific. Methods: Plots were established in areas post-mining and with different successional ages (12-15 years, 30-35 years, and mature forest). The aboveground biomass and physicochemical parameters of the soil were measured. Results: An aboveground biomass of 15.58 t ha-1, 35.17 t ha-1, and 178.32 t ha-1 was recorded at 12-15 years, 30-35 years, and mature forests, respectively. The species with the highest biomass content in post-mining forests were Cespedesia spathulata and Clidemia septuplinervia. The aboveground biomass was positively correlated with organic matter (OM), calcium (Ca), magnesium (Mg), CICE, total nitrogen (N), and silt. In contrast, the relationship was negative with sand, aluminum (Al), and potassium (K) content. It was evidenced that the relationship between aboveground biomass and soils differed in each successional age. When evaluating the changes of aboveground biomass and soils in the succession, it was observed that the aboveground biomass and total N increased with the recovery time. At the same time, the P and K decreased with succession. On the other hand, the contents of OM, Mg, Al, Ca, and CICE showed curvilinear tendencies since they increased in the first stages and then decreased in the advanced successional stages. Conclusions: Aboveground biomass increases with forest recovery time in the study area. This increase is influenced by the presence of two dominant species shared among the investigated ecosystems and by the soil's N, P, and K content.

https://doi.org/10.15517/rev.biol.trop..v72i1.55276
PDF
HTML
EPUB

References

Álvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., & Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297–308. https://doi.org/10.1016/j.foreco.2011.12.013

Alvarez-Berríos, N. L., & Aide, M. T. (2015). Global demand for gold is another threat for tropical forests. Environmental Research Letters, 10(1), 014006. https://doi.org/10.1088/1748-9326/10/1/014006

Alves, D., Soares, J. V., Amaral, S., Mello, E., Almeida, S., Da Silva, O. F., & Silveira. A. (1997). Biomass of primary and secondary vegetation in Rondonia, Western Brazilian Amazon. Global Change Biology, 3(5), 451–461. https://doi.org/10.1046/j.1365-2486.1997.00081.x

Austin, A., & Vitousek, P. (1998). Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia, 113(4), 519–529. https://doi.org/10.1007/s004420050405

Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests. (1ra Ed.). Rome: FAO Forestry Paper.

Carreño, A., & Chaparro-Giraldo, A. (2013). Tolerancia al aluminio en especies vegetales: mecanismos y genes. Universitas Scientárvm, 18(3), 283–310. https://doi:10.11144/Javeriana.SC18-3.taev

Chandra, J., & Keshavkant, S. (2021). Mechanisms underlying the phytotoxicity and genotoxicity of aluminum and their alleviation strategies: A review. Chemosphere, 278, 130384. https://doi.org/10.1016/j.chemosphere.2021.130384

Chazdon, R. L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6(1), 51–71. https://doi.org/10.1078/1433-8319-00042

Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., Aide, T. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Craven, D., Almeida-Cortez, J. S., Cabral, G. A. L., De Jong, B., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M. ... Poorter, L. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), e1501639. https://www.science.org/doi/abs/10.1126/sciadv.1501639

Davidson, E. A., De Carvalho, C. J. R, Vieira, I. C. G., Figueiredo, R. D., Moutinho, P., Ishida, F. Y., Dos Santos, M. T. P., Guerrero, J. B., Kalif, K., & Saba, R. T. (2004). Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications, 14(4), 150–163. https://doi.org/10.1890/01-6006

FAO & PNUMA. (2020). El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas. FAO & UNEP. https://doi.org/10.4060/ca8642es

Feldpausch, T. R., Rondon, M. A., Fernandes, E., Riha, S. J., & Wandelli, E. (2004). Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecological Applications, 14(4), 164–176. http://www.jstor.org/stable/4493638

Gentry, A. (1993). A Field Guide to the Families and Genera of Woody Plants of Northwes South Amercian. Conservation International.

Guariguata, M. R., & Ostertag, G. R. (2001). Neotropical secondary forest successions: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1

Harrington, R. A., Fownes, J. H., & Vitousek, P. M. (2001). Production and resource use efficiencies in N and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems, 4(7), 646–657. https://doi.org/10.1007/s10021-001-0034-z

Jansen, S., Broadley, M. R., Robbrecht, E., & Smets, E. F. (2002). Aluminum hyperaccumulation in agiosperms: a review of its phylogenetic significance. The Botanical Review, 68(2), 235–269.

Johnson, C. M., Zarin, D. J., & Johnson, A. H. (2000). Post-disturbance aboveground biomass accumulation in global secondary forests. Ecology, 81(5), 1395–1401. https://doi.org/10.1890/0012-9658(2000)081[1395:PDABAI]2.0.CO;2

Kalamandeen, M., Gloor, E., Johnson, I., Agard, S., Katow, M., Vanbrooke, A., Ashley, D., Batterman, S. A., Ziv, G., Holder‐Collins, K., Phillips, O. L., Brondizio, E. S., Vieira, I., & Galbraith, D. (2020). Limited biomass recovery from gold mining in Amazonian forests. Journal of Applied Ecology, 57(9), 1730–1740. https://doi.org/10.1111/1365-2664.13669

Kaspari, M., Garcia, M. N., Harms, K. E., Santana, M., Wright, S. J., & Yavitt, J. B. (2007). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11(1), 35–43. https://doi.org/10.1111/j.1461-0248.2007.01124.x

León, J. D., & Osorio N. W. (2014). Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia. The Scientific World Journal, 2014, 693981. https://doi.org/10.1155/2014/693981

Lu, D., Moran, E., & Mausel, P. (2002). Linking Amazonian secondary succession forest growth to soil properties. Land Degradation and Development, 13(4), 331–343. https://doi.org/10.1002/ldr.516

Martins, K. G., Marques, M. C. M., Dos Santos, E., & Marques, R. (2015). Effects of soil conditions on the diversity of tropical forests across a successional gradient. Forest Ecology and Management, 349, 4–11. https://doi.org/10.1016/j.foreco.2015.04.018

Moran, E. F., Brondizio, E., Tucker, J. M., Da Silva-Fosberg, M. C., McCracken, S., & Falesi, I. (2000). Effects of soil fertility and land-use on forest succession in Amazônia. Forest Ecology and Management, 139, 93–108. https://doi.org/10.1016/S0378-1127(99)00337-0

Oberleitner, F., Egger, C., Oberdorfer, S., Dullinger, S., Wanek, W., & Hietz, P. (2021). Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Forest Ecology and Management, 479, 118580. https://doi.org/10.1016/j.foreco.2020.118580

Osorio, N. W. (2014) Manejo de nutrientes en suelos del trópico. L. Vieco S.A.S.

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q. D., Dasqupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S. … van Ypersele, J. P. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. http://www.mendeley.com/research/climate-change-2014-synthesis-report-contribution-working-groups-i-ii-iii-fifth-assessment-report-in-20

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://www.science.org/doi/10.1126/science.1201609

Paoli, G. D., Curran, L. M., & Zak, D. R. (2005). Phosphorus efficiency of aboveground productivity in Bornean rain forest: evidence against the unimodal efficiency hypothesis. Ecology, 86(6), 1548–1561. https://doi.org/10.1890/04-1126

Poorter, L., Bongers, F., Aide, T. M., Almeyda-Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S., Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M.,... Rozendaal D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530, 211–214. https://doi.org/10.1038/nature16512

Poveda, I. C., Rojas, C., Rudas, A., & Rangel, O. (2004). El Chocó biogeográfico: Ambiente Físico. In Universidad Nacional de Colombia (Ed.), Colombia Diversidad Biótica IV. El Chocó biogeográfico/ Costa Pacífica (pp. 34–45). Universidad Nacional de Colombia.

Primack, R. B., & Vidal, O. (2019). Introducción a la biología de la conservación. Ediciones Científicas Universitarias.

Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., & Calle, L. (2019). Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences, 116(10), 4382–4387. https://doi.org/10.1073/pnas.1810512116

Quinto, H. & Moreno, F. H. (2016). Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía Medellín, 69(1), 7813–7823. http://dx.doi.org/10.15446/rfna.v69n1.54749

Quinto, H., Ayala-Vivas, G., & Gutiérrez, H. (2022). Contenido de nutrientes, acidez y textura del suelo en áreas degradadas por la minería en el Chocó biogeográfico. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(179), 514–528. https://doi.org/10.18257/raccefyn.1615

Quinto, H., Cuesta-Nagles, J., Mosquera-Sánchez, I., Palacios-Hinestroza, L., Peñaloza, H. (2013). Biomasa vegetal en zonas degradadas por minería en un bosque pluvial tropical del Chocó Biogeográfico. Revista Biodiversidad Neotropical, 3(1), 53–64. https://dialnet.unirioja.es/servlet/articulo?codigo=5168136

Quinto, H., Ibargüen-Mosquera, S., & Cárdenas-Victoria, M. F. (2024a). Efectos de la fertilización sobre la producción de hojarasca de bosques post-minería del Chocó Biogeográfico. Colombia Forestal, 27(1), e20809. https://doi.org/10.14483/2256201X.20809

Quinto, H., Valois-Cuesta, H, & Pérez-Abadía, D. F. (2024b). Influence of soil nutrients on net primary productivity in post-mining forests in the Colombian Pacific. Revista Brasileira de Ciencia do Solo, 48, :e0230053. https://doi.org/10.36783/18069657rbcs20230053

R Core Team (2013). R: A language and environment for statistical computing (Software). R Foundation for Statistical Computing. https://www.r-project.org/

Ramírez, G., & Ledezma, E. (2007). Efectos de las actividades socio-económicas (minería y explotación maderera) sobre los bosques del departamento del Chocó. Revista Institucional Universidad Tecnológica del Chocó, 26(1), 58–65. https://dialnet.unirioja.es/servlet/articulo?codigo=2544441

Ramírez, G., Quinto, H., Vargas, L., & Rangel, O. J. (2019). Temporary Effect of Mining on Breathing and on the Physicochemical Conditions of Soil. Modern Environmental Science and Engineering, 5(9), 837–848. https://doi.org/10.15341/mese(2333-2581)/09.05.2019/007

Reed, S. C., Townsend, A. R., Taylor, P. G., & Cleveland, C. C. (2011). Phosphorus Cycling in Tropical Forests Growing on Highly Weathered Soils. In Bünemann E., Oberson A., Frossard E. (Eds.), Phosphorus in Action. Soil Biology (Vol 26). Springer. https://doi.org/10.1007/978-3-642-15271-9_14

Shetty, R., Vidya, C.S.N., Prakash, N.B., Lux, A., & Vaculik, M. (2021). Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Science of the Total Environment, 765(3), 142744. https://doi.org/10.1016/j.scitotenv.2020.142744

Sullivan, B. W., S. Alvarez-Clare, S. C. Castle, S. Porder, S. C. Reed, L. Schreeg, C. C. Cleveland, & A. R. Townsend. (2014). Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology, 95(3), 668–681. https://doi.org/10.1890/13-0825.1

Torres-Torres, J. J., Mena-Mosquera, V. E., & Álvarez, E. (2017). Carbono aéreo almacenado en tres bosques del Jardín Botánico del Pacífico, Chocó, Colombia. Entramado, 13(1), 200–209. https://doi.org/10.18041/entramado.2017v13n1.25110

Torres-Torres, J. J., Quinto, H., & Medina-Arroyo, H. H. (2023). Diversidad de especies leñosas y su relación con variables ambientales en bosques post-minería del Chocó Biogeográfico. Boletín Científico Museo de Historia Natural Universidad de Caldas, 27(2), 13–29. https://doi.org/10.17151/bccm.2023.27.2.1

Tucker, J. M., Brondizio, E. S., Moran, E. F. (1998). Rates of forest regrowth in eastern Amazonia: a comparison of Altamira and Bragantina Regions, Parâ State, Brazil. Interciencia, 23(2), 64–73.

Vitousek, P. M., & Farrington, H. (1997). Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry, 37, 63–75. https://doi.org/10.1023/A:1005757218475

Vitousek, P. M., Walker, L. R., Whiteaker, L. D., & Matson, P. A. (1993). Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry, 23, 197–215. https://doi.org/10.1007/BF00023752

Vitousek, P., S. Porder, B. Z. Houlton, & Chadwick, O. A. (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20(1), 5–15. https://doi.org/10.1890/08-0127.1

Walker, L. R. (1993). Nitrogen fixers and species replacements in primary succession. In J. Miles & D. W. H. Walton (Eds.), Primary Succession on Land (pp. 249–272). Blackwell.

Walker, T. W., & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15(1), 1–19. https://doi.org/10.1016/0016-7061(76)90066-5

Watanabe, T., & Osaki, M. (2002). Mechanisms of adaptation to high aluminum condition in native plant Species growing in acid soils: a review. Communications in Soil Science and Plant Analysis, 33(7), 1247–1260. https://doi.org/10.1081/CSS-120003885

Yguel, B., Piponiot, C., Mirabel, A., Dourdain, A., Herault, B., Gourlet-Fleury, S., Forget, P. M., & Fontaine, C. (2019). Beyond species richness and biomass: Impact of selective logging and silvicultural treatments on the functional composition of a neotropical forest. Forest Ecology and Management, 433, 528–534. https://doi.org/10.1016/j.foreco.2018.11.022

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical

Downloads

Download data is not yet available.