Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Unveiling activity patterns of the deer Odocoileus virginianus (Artiodactyla: Cervidae) and its predators in Mexico's Arid Region
PDF
HTML
EPUB

Keywords

abundance
camera traps
deer habitat use
Tehuacán-Cuicatlán valley
Lynx rufus
abundancia
Cámaras trampa
uso de hábitat del venado
Valle Tehuacán-Cuicatlán
Lynx rufus

How to Cite

Plata Pérez, F., Urbina Flores, D. P., Villarreal Espino Barros, O. A., Gloria Trujillo, A. ., & Mendoza Martínez, G. . D. (2024). Unveiling activity patterns of the deer Odocoileus virginianus (Artiodactyla: Cervidae) and its predators in Mexico’s Arid Region. Revista De Biología Tropical, 72(1), e55515. https://doi.org/10.15517/rev.biol.trop.v72i1.55515

Abstract

Introduction: Size, predator presence, and habitat nutritional quality influence herbivorous species' activity patterns and resource utilization. Objectives:  This study aims to determine the relative abundance and activity patterns of white-tailed deer (Odocoileus virginianus) and their main predators.

Methods: The study was conducted in the WMU "Bienes Comunales Santa Cruz Nuevo" in Totoltepec de Guerrero, Puebla, Mexico. Twenty-two quadrants were randomly selected, and camera traps were installed. Over a two-year period (2018-2020), wildlife visits were recorded to estimate the relative abundance index (RAI), activity patterns, and overlap coefficient (Dhat1) of white-tailed deer and their predators based on their activity schedule.

Results: The estimated RAI for deer was 7.2%, while it was 3.4% for coyotes (Canis latrans), 2.3% for bobcats (Lynx rufus), and 0.14% for pumas (Puma concolor). White-tailed deer were observed in 31% of the camera traps, while coyotes were captured in 68% of them. The overlap of the activity schedule, Dhat1, between deer and coyotes was 0.18. In contrast, the activity overlap between foxes and deer was higher (Dhat1: 0.2979; EE 0.037) based on the analysis of variance. The activity pattern of coyotes indicated they were crepuscular, with increased activity during the afternoon and night. However, an increase in activity synchronized with deer's patterns was also observed. The bobcat coincided with deer in 10% of the cameras, but due to the limited number of observations, it was not possible to estimate the activity overlap between these species.

Conclusions: The activity overlap between white-tailed deer and foxes is more significant than that of deer and coyotes in this region. The activity overlap between deer and coyotes is lower compared to other parts of the world.

https://doi.org/10.15517/rev.biol.trop..v72i1.55515
PDF
HTML
EPUB

References

Anderson, C. W., Nielsen, C. K., Hester, C. M., Hubbard, R. D., Stroud, J. K., & Schauber, E. M. (2013). Comparison of indirect and direct methods of distance sampling for estimating density of white-tailed deer. Wildlife Society Bulletin, 37(1), 146–154. https://doi.org/10.1002/wsb.231

Barrera-Salazar, A., Mandujano, S., Villarreal Espino-Barros, O. A., & Jiménez-García, D. (2015). Classification of vegetation types in the habitat of white-tailed deer in a location of the Tehuacán-Cuicatlán Biosphere Reserve, Mexico. Tropical Conservation Science, 8(2), 547–563. https://doi.org/10.1177/194008291500800217

Bowler, M. T., Tobler, M. W., Endress, B. A., Gilmore, M. P., & Anderson, M. J. (2017). Estimating mammalian species richness and occupancy in tropical forest canopies with arboreal camera traps. Remote Sensing in Ecology and Conservation, 3(3), 146–157. https://doi.org/10.1002/rse2.35

Combe, F. J., Jaster, L., Ricketts, A., Haukos, D., & Hope, A. G. (2022). Population genomics of free‐ranging Great Plains white‐tailed and mule deer reflects a long history of interspecific hybridization. Evolutionary Applications, 15(1), 111–131. https://doi.org/10.1111/eva.13330

Crawford, D. A., Conner, L. M., Morris, G., & Cherry, M. J. (2021). Predation risk increases intraspecific heterogeneity in white-tailed deer diel activity patterns. Behavioral Ecology, 32(1), 41–48. https://doi.org/10.1093/beheco/araa089

Crawley, M. J. (2013). The R book (2nd ed.). Wiley.

Cruz-Jácome, O., López-Tello, E., Delfín-Alfonso, C. A., & Mandujano, S. (2015). Riqueza y abundancia relativa de mamíferos medianos y grandes en una localidad en la Reserva de la Biosfera Tehuacán-Cuicatlán, Oaxaca, México. Therya, 6(2), 435–448. https://doi.org/10.12933/therya-15-277

Deuel, N. R., Conner, L. M., Miller, K. V., Chamberlain, M. J., Cherry, M. J., & Tannenbaum, L. V. (2017). Habitat selection and diurnal refugia of gray foxes in southwestern Georgia, USA. PLOS ONE, 12(10), e0186402. https://doi.org/10.1371/journal.pone.0186402

Duquette, J. F., Flores, E. E., Ureña, L., Ortega, J., Cisneros, I., Moreno, R., & Loman, Z. (2020). Habitat use and abundance of island-endemic- white-tailed deer in Panama. Mammal Study, 45(1), 13. https://doi.org/10.3106/ms2019-0036

Egan, M. E., Day, C. C., Katzner, T. E., & Zollner, P. A. (2021). Relative abundance of coyotes (Canis latrans) influences gray fox (Urocyon cinereoargenteus) occupancy across the eastern United States. Canadian Journal of Zoology, 99(2), 63–72. https://doi.org/10.1139/cjz-2019-0246

Gallina, S., & Bello Gutierrez, J. (2014). Patrones de actividad del venado cola blanca en el noreste de México. Therya, 5(2), 423–436. https://doi.org/10.12933/therya-14-200

Gallina, S., López Colunga, P., Valdespino, C., & Farías, V. (2016). Abundancia relativa de la zorra gris Urocyon cinereoargenteus (Carnívora: Canidae) en la zona centro de Veracruz, México. Revista de Biología Tropical, 64(1), 221. https://doi.org/10.15517/rbt.v64i1.18237

Gronwald, M., & Russell, J. (2021). Measuring rat relative abundance using camera traps and digital strike counters for Goodnature A24 self-resetting traps. New Zealand Journal of Ecology, 45(1), 3430. https://doi.org/10.20417/nzjecol.45.7

Henderson, C. B., Demarais, S., Street, G. M., Strickland, B. K., & McKinley, W. T. (2020). Fine-scale vegetation use by white-tailed deer in a forested landscape during hunting season. Journal of Forest Research, 25(6), 439–443. https://doi.org/10.1080/13416979.2020.1814510

Hernández-Aguilar, J. A., Cortina-Villar, H. S., García-Barrios, L. E., & Castillo-Santiago, M. Á. (2017). Factors limiting formation of community forestry enterprises in the Southern Mixteca Region of Oaxaca, Mexico. Environmental Management, 59(3), 490–504. https://doi.org/10.1007/s00267-017-0821-8

Higdon, S. D., Diggins, C. A., Cherry, M. J., & Ford, W. M. (2019). Activity patterns and temporal predator avoidance of white-tailed deer (Odocoileus virginianus) during the fawning season. Journal of Ethology, 37(3), 283–290. https://doi.org/10.1007/s10164-019-00599-1

INEGI. (2021). Aspectos geográficos, Puebla 2021. Instituto Nacional de Estadística y Geografia. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiUstva_KD3AhWTDkQIHeIzATsQFnoECAUQAQ&url=https%3A%2F%2Fwww.inegi.org.mx%2Fcontenidos%2Fapp%2Fareasgeograficas%2Fresumen%2Fresumen_21.pdf&usg=AOvVaw2I0Hrw2j2mhDiq5MUdkW3o

Mandujano, S. (2019). Fototrampeo en R: Organización y Análisis de Datos. Volumen I. Instituto de Ecología A.C. https://www.researchgate.net/publication/340413631_MANDUJANO_S_2019_Indice_de_abundancia_relativa_RAI

Mandujano, S., & Morteo-Montiel, O. (2018). Sugerencias para organizar, administrar y exportar datos de foto-trampeo con el programa WILD.ID. Revista Mexicana de Mastozoologia, 1(2), 31. https://doi.org/10.22201/ie.20074484e.2018.1.2.263

Meredith, M., & Ridout, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(9 september), 322–327. https://doi.org/10.1198/jabes.2009.08038

Meredith, M., & Ridout, M. (2018). Overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.3.2.

Michel, E. S., Gullikson, B. S., Brackel, K. L., Schaffer, B. A., Jenks, J. A., & Jensen, W. F. (2020). Habitat selection of white-tailed deer fawns and their dams in the Northern Great Plains. Mammal Research, 65(4), 825–833. https://doi.org/10.1007/s13364-020-00519-6

Palmer, M. S., Swanson, A., Kosmala, M., Arnold, T., & Packer, C. (2018). Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. African Journal of Ecology, 56(4), 791–803. https://doi.org/10.1111/aje.12566

Pustilnik, J. D., Searle, J. B., & Curtis, P. D. (2021). The effects of red fox scent on winter activity patterns of suburban wildlife: Evaluating predator-prey interactions and the importance of groundhog burrows in promoting biodiversity. Urban Ecosystems, 24(3), 529–547. https://doi.org/10.1007/s11252-020-01056-5

Retana Guascón, O. G., Martínez-Pech, L. G., Niño-Gómez, G., Victoria-Chan, E., Cruz-Mass, Á., & Uc-Piña, A. (2015). Patrones y tendencias de uso del venado cola blanca (Odocoileus virginianus) en comunidades mayas, Campeche, México. Therya, 6(3), 597–608. https://doi.org/10.12933/therya-15-313

Rodríguez-Luna, C. R., Servín, J., Valenzuela-Galván, D., & List, R. (2021). Trophic niche overlap between coyotes and gray foxes in a temperate forest in Durango, Mexico. PLOS ONE, 16(12), e0260325. https://doi.org/10.1371/journal.pone.0260325

Roque, D. V., Göttert, T., Macandza, V. A., & Zeller, U. (2021). Assessing distribution patterns and the relative abundance of reintroduced large herbivores in the Limpopo National Park, Mozambique. Diversity, 13(10), 456. https://doi.org/10.3390/d13100456

Royo, A. A., Kramer, D. W., Miller, K. V., Nibbelink, N. P., & Stout, S. L. (2017). Spatio-temporal variation in foodscapes modifies deer browsing impact on vegetation. Landscape Ecology, 32(12), 2281¬–2295. https://doi.org/10.1007/s10980-017-0568-x

Rzedowski, J. (2006). Vegetación de México (1st ed.). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Vegetación de México https://www.biodiversidad.gob.mx › librosDig › pdf

Tanwar, K. S., Sadhu, A., & Jhala, Y. V. (2021). Camera trap placement for evaluating species richness, abundance, and activity. Scientific Reports, 11(1), 23050. https://doi.org/10.1038/s41598-021-02459-w

UNESCO. (2018). Tehuacán-Cuicatlán Valley: Originary habitat of Mesoamerica (World Heritage Convention). https://whc.unesco.org/en/list/1534/

Urbanek, R. E., Nielsen, C. K., Preuss, T. S., & Glowacki, G. A. (2012). Comparison of aerial surveys and pellet-based distance sampling methods for estimating deer density. Wildlife Society Bulletin, 36(1), 100–106. https://doi.org/10.1002/wsb.116

Veals, A. M., Koprowski, J. L., Bergman, D. L., VerCauteren, K. C., & Wester, D. B. (2021). Occurrence of mesocarnivores in montane sky islands: How spatial and temporal overlap informs rabies management in a regional hotspot. PLOS ONE, 16(11), e0259260. https://doi.org/10.1371/journal.pone.0259260

Villarreal Espino-Barros, O. A., Viera, R. G., Franco, F. J., Hernández, J. E. H., & Castañón, S. R. (2008). Evaluación de las unidades de manejo para la conservación de la vida silvestre del venado cola blanca en la región Mixteca, México. 26.

Villarreal-Espino, O. A., Plata-Pérez, F. X., Camacho-Ronquillo, J. C., Hernández-Hernández, J. E., Franco-Guerra, F. J., Aguilar-Ortega, B., & Mendoza-Martínez, G. D. (2011). El venado cola blanca en la mixteca poblana. Therya, 2(2), 103–110. https://doi.org/10.12933/therya-11-25

Villarreal-Espino-Barros, O. A., Plata-Pérez, F. X., Mendoza-Martínez, G. D., Martínez-García, J. A., Hernández-García, P. A., & Arcos-García, J. L. (2012). Distancia radial al agua, cobertura de escape e indicios de coyote (Canis latrans), asociados a la presencia del venado cola blanca (Odocoileus virginianus). Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 18(2), 231–239. https://doi.org/10.5154/r.rchscfa.2011.01.012

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical

Downloads

Download data is not yet available.