Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Elaeis guineensis (Arecaceae) residue as a fuel sorbent for passive application in fire-fighting engineering
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

How to Cite

Aragón, H., Calderón-Mesén, P. ., & Mata-Segreda, J. F. (2024). Elaeis guineensis (Arecaceae) residue as a fuel sorbent for passive application in fire-fighting engineering. Revista De Biología Tropical, 72(1), e55957. https://doi.org/10.15517/rev.biol.trop.v72i1.55957

Abstract

Introduction: Spills of flammable liquids can lead to serious accidents, mainly in industrial plants and on roads. To prevent the spread of spills, various forms of collection are used, such as absorption with porous solids. Agroindustrial waste can be used as sorbent materials for flammable liquids. Objective: To determine the sorption capacity of the residual empty-fruit bunch of oil-palm (Elaeis guineensis) and the macaw palm (Acrocomia sp.) nutshell for four organic flammable liquids. Methods: The residual biomasses of E. guineensis and Acrocomia sp. were assessed as sorbents for spilled fuels (diesel, jet fuel, commercial kerosene, and gasoline). Volumetric measurement of liquid-fuel absorption at 24 ºC was taken during a week. Desorption was measured at 50 ºC as the drying kinetics, by using moisture scales. Results: The sorption capacity of the Acrocomia sp. material was not satisfactory, compared to the E. guineensis residual material, due to differences in the residual architecture of the organic material. This last can absorb 2.4 ± 0.2 cm3 g-1 at 24 ºC, during a one-week period. Diatomite absorbs greater quantities of the organic liquids but, the fluids diffusion at 50 ºC is 0.26 ± 0.09 times more slowly in the mineral matrix, because of the greater pore tortuosity in this mineral matrix. Conclusions: The oil-palm empty fruit bunch of E. guineensis, showed lesser but adequate performance than the sorbing behavior for fire hazard mitigation of diatomite. The nutshell of macaw palm (Acrocomia sp.) did not prove to be useful for this recovery operation.

https://doi.org/10.15517/rev.biol.trop..v72i1.55957
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Alfaro, A. (2007). La tierra moler o "diatomita" como sistema de remoción de sustancias químicas en el laboratorio. Revista de Ciencia y Tecnología, 25(1), 83–96. https://hdl.handle.net/10669/14633

American Society for Testing Materials. (2020). ASTM E18-22: Standard test methods for rockwell hardness and rockwell superficial hardness of metallic materials. American Society for Testing Materials, United State of America. https://www.astm.org/e0018-22.html

American Society for Testing Materials. (2022). ASTM D6015-21 Standard Test Method for Static Water Absorption of Leather. American Society for Testing Materials, United State of America. https://www.astm.org/d6015-21.html

Aragón, H., Aragón, C., Miranda-Morales, B., & Sanabria-Sandí, F. R. (2023). Caracterización y construcción de un molino de martillos compacto para uso de laboratorio para homogeneizar fibras naturales de Elaeis guineensis y Acrocomia sp. Ingeniería, 33(2), 134–152. https://doi.org/10.15517/ri.v33i2.54419

Aragón, H., & Mata-Segreda, J. F. (2023). Evaporation kinetics of liquid mixtures and safe handling. ACS Chemical Health & Safety, 30(2), 54–62. https://doi.org/10.1021/acs.chas.2c00070

Avner, S. H. (1988). Introducción a la metalurgia física (2da Ed). MacGraw-Hill.

Betancur, J. (2014). Acercamiento a los estudios realizados con microfósiles en Costa Rica. Revista Geológica de América Central, 2014, 73–79. https://doi.org/10.15517/rgac.v0i0.16570

Brizi Neris, J., Martínez Luzardo, F. H., Paranhos da Silva, E. G., & García Velasco, F. (2019). Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review. Chemical Engineering Journal, 357, 404–420. https://doi.org/10.1016/j.cej.2018.09.125

Chacón, L., Coto, O., & Flores, M. (2018). Actualización de la encuesta de biomasa como insumo para su incorporación en la matriz energética de Costa Rica. EMA Energía Medio Ambiente y Desarrollo, Costa Rica. https://septea.cambioclimatico.go.cr/wp-content/uploads/2022/04/Informe_Final_Actualizacion_Encuesta_Biomasa_SEPSE_CRUSA_EMA_2018.pdf

Coto, O. (2013). Uso de los residuos agrícolas orgánicos como fuente de energía: aprovechamiento de recursos y reducción de gases de efecto invernadero en Costa Rica. Fundación para el Fomento y Promoción de la Investigación y Transferencia de Tecnología Agropecuaria, Costa Rica. https://docplayer.es/12647419-Proyecto-informe-de-consultoria-producto-1.html#google_vignette

Díaz-Díaz, M. A., Rivas-Trasancos, L., Acosta-Sanchez, J., Miller-Palmer, S., Romero Silva, R., Hernández-Hernández, D., & Laffita Rodriguez, C. (2013). Evaluación a escala de banco de materiales absorbentes para recogida de hidrocarburos en suelos [Congreso]. IV Congreso Cubano de Petróleo y Gas (PETROGAS), La Habana, Cuba. http://www.redciencia.cu/geobiblio/paper/2013_Rivas_PETRO4-P5.pdf

De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 247, 1144–1154. https://doi.org/10.1016/j.biortech.2017.09.163

Doshi, B., Sillanpää, M., & Kalliola, S. (2018). A review of bio-based materials for oil spill treatment. Water Research, 135, 262–277. https://doi.org/10.1016/j.watres.2018.02.034

Fernández-Solano, B., & Mata-Segreda, J. F. (2021). Effect of molecular structure on diffusion of alcohols through type-A zeolite pores (0.5 nm). Journal of Materials Science and Engineering A, 11, 48–55.

Hussain, A., Ani, F. N., Darus, A. N., Mokhtar, H., Azam, S., & Mustafa, A. (2006). Thermochemical behaviour of empty fruit bunches and oil palm shell waste in a circulating fluidized-bed combustor (CFBC). Journal of Oil Palm Research, 18, 210–218.

Instituto de Normas Técnicas de Costa Rica. (2022). Determinación de la distribución de tamaño de partícula para combustibles sin comprimir. (INTE/ISO 17827-1:2022). Instituto de Normas Técnicas de Costa Rica, Costa Rica.

International Organization for Standardization. (2020). Coal and coke–Determination of gross calorific value. International Organization for Standardization, Suiza. https://www.iso.org/standard/75883.html

León-Ovelar, R., Fernández-Boy, M. E., & Knicker, H. (2022). Characterization of the residue (endocarp) of Acrocomia aculeata and its biochars as a potential source for soilless growing media. Horticulturae, 8(8), 739. https://doi.org/10.3390/horticulturae8080739

Minera José Cholino e Hijos S. R. L. (2010). Ficha técnica. Diatomita. Minera José Cholino e Hijos S. R. L., Argentina. http://www.mineracholino.com.ar/producto/diatomita

Ortiz González, D. P., Andrade Fonseca, F., Rodríguez Niño, G., & Montenegro Ruiz, L. C. (2006). Biomateriales sorbentes para la limpieza de derrames de hidrocarburos en suelos y cuerpos de agua. Ingeniería e Investigación, 26(2), 20–27. http://www.scielo.org.co/pdf/iei/v26n2/v26n2a03.pdf

Oviedo Chávez, A. C., & Vinueza Galárraga, J. C. (2020). Residuos lignocelulósicos y sus usos: una revisión. infoANALÍTICA, 8(1), 133–147.

Parra Reyes, J. A., & Pérez, E. H. (2023). Estimación de materiales lignocelulósicos residuales como adsorbentes de cromo y plomo. Biotecnología en el Sector Agropecuario y Agroindustrial, 21(1), 18–27. https://doi.org/10.18684/rbsaa.v21.n1.2023.1610

Rahimi, P., & Ward, C. (2005). Kinetics of Evaporation: Statistical Rate Theory Approach. International Journal of Thermodynamics, 8(1), 1–14. https://dergipark.org.tr/en/pub/ijot/issue/5755/76683

Roa, K., Oyarce, E., Boulett, A., Al Samman, M., Oyarzun, D., Pizarro, G. D. C., & Sánchez, J. (2021). Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustainable Materials and Technologies, 29, e00320. https://doi.org/10.1016/j.susmat.2021.e00320

Smith, R. L. (2001). Predicting evaporation rates and times for spills of chemical mixtures. Annals of Occupational Hygiene, 45(6), 437–445. https://doi.org/10.1093/annhyg/45.6.437

Sukiran, M. A., Kheang, L. S., Bakar, N. A., & May, C. Y. (2011). Production and characterization of Bio-char from the pyrolysis of empty fruit bunches, American Journal of Applied Sciences, 8(10), 984–988.

Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J. T. N., Tsang, D. C. W., & Hunt, A. J. (2019). Lignin materials for adsorption: Current trend, perspectives, and opportunities. Bioresource Technology, 272, 570–581. https://doi.org/10.1016/j.biortech.2018.09.139

Verdeja González, L. F., Sancho Martínez, J. P., Barranzuela Queneche, J. L., & Vásquez Arrieta, E. R. (1990). Características fisicoquímicas de las diatomitas de Bayovar (Perú). Boletín de la Sociedad Española de Cerámica y Vidrio, 29(2), 87–93. http://hdl.handle.net/10651/31438

Vieira, S. S., Magriotis, Z. M., Santos, N. A. V., Cardoso, M., & Saczk, A. A. (2012). Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low-cost substrate for the adsorption of dyes. Chemical Engineering Journal, 183, 152–161. https://doi.org/10.1016/j.cej.2011.12.047

Vieira, W. T., Daltro Bispo, M., de Melo Farias, S., da Silva Vasconcelos de Almeida, A., Lopes da Silva, T., Adeodato Vieira, M. G., Soletti, J. I., & Balliano, T. L. (2021). Activated carbon from macauba endocarp (Acrocomia aculeate) for removal of atrazine: Experimental and theoretical investigation using descriptors based on DFT. Journal of Environmental Chemical Engineering, 9(2), 105155. https://doi.org/10.1016/j.jece.2021.105155

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical

Downloads

Download data is not yet available.