Abstract
Introduction: Blooms of cyanobacteria are becoming increasingly common, and understanding their dynamics can be crucial for proposing appropriate management strategies. While physical and chemical parameters influencing blooms have been widely studied, less attention has been paid to the susceptibility of biological communities. Objective: The purpose of this study was to analyze phytoplankton abundance networks during cyanobacterial blooms at different intensity levels and how they interact and/or affect the phytoplankton community. Methods: We used 22 samplings conducted in El Limón reservoir located in northern Argentina, known for recurrent cyanobacterial blooms. Each sampling was classified into four levels based on cyanobacteria abundance (cells/ml): Level 1 (10 000-30 000); Level 2 (30 000-50 000); Level 3 (50 000-100 000); and Level 4 (> 100 000). For each level, abundance correlation networks were constructed considering all species. Results: A pattern of decreasing statistically significant abundance correlations was observed as bloom intensity increased: 219 correlations at Level 1; 144 at Level 2; 80 at Level 3, and only 33 at Level 4. Blooming cyanobacteria showed few correlations with other species at all levels, indicating a certain independence from the community. An increase in bloom intensity appears to disconnect the phytoplankton abundance correlation network. Conclusion: The analysis of abundance correlation networks should be a valuable tool for understanding the dynamics and development of cyanobacterial blooms, as well as identifying key species in this process.
References
Amé, M., Diaz, M., & Wunderlin, D. (2003). Occurrence of toxic cyanobacterial blooms in San Roque reservoir (Córdoba, Argentina): a field and chemometric study. Environmental Toxicology, 18(1), 192–201.
APHA. (2005). Standard methods for the examination of water and wastewater. APHA.
Arias, M., & Bianchi, A. (1996). Estadísticas climatológicas de la Provincia de Salta. Dirección de Medio Ambiente y Recursos Naturales, Argentina.
Bazán, R., Corral, M., Pagot, M., Rodríguez, A., Oroná, C., Rodríguez, M. I., & Busso, F. (2005). Teledetección y modelado numérico para el análisis de la calidad de agua del embalse Los Molinos, Córdoba, Argentina. Revista Ingeniería Hidráulica en México, 20(2), 121–135.
Berry, D., & Widder, S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 5(2), 219–225.
Bittencourt-Oliveira, M., Carmo, D., Piccin-Santos, V., Moura, A., Aragão-tavares, N., & Cordeiro-Araújo, M. (2014). Cyanobacteria, microcystins and cylindrospermopsin in public drinking supply reservoirs of Brazil. Anais da Academia Brasileira de Ciências, 86(1), 297–310.
Cabrera-Silva, S. (1984). Estimación de clorofila a y feopigmentos. Una revisión metodológica. UNESCO.
Carlson, R. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(1), 361–369.
Cheung, M., Liang, Y., & Lee, J. (2013). Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology, 51(2), 1–10.
Cires, S., & Ballot, A. (2016). A review of the phylogenetic, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (Cyanobacteria). Harmful Algae, 54(1), 21–43.
Coyte, K. Z., Schluter, J., & Foster, K. R. (2015). The ecology of the microbiome: networks, competition, and stability. Science, 350(6261), 663–666.
D’Amen, M., Mod, H. K., Gotelli, N. J., & Guisan, A. (2018). Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co‐occurrence. Ecography, 41(8), 1233–1244.
Deng, Y., Jiang, Y. H., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network analyses. BMC Bioinformatics, 13(1), 1–20.
Di Rienzo, J., Balzarini, M., Gonzalez, L., Casanoves, F., Tablada, M., & Walter Robledo, C. (2010). InfoStat: software para análisis estadístico. InfoStat.
Echenique, R., Gianuzzi, L., & Ferrari, L. (2006). Drinking water: problems related to water supply in Bahía Blanca, Argentina. Acta Toxicológica Argentina, 14(2), 23–30.
Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology, 10(8), 538–550.
Feng, K., Zhang, Y., He, Z., Ning, D., & Deng, Y. (2019). Interdomain ecological networks between plants and microbes. Molecular Ecology Resources, 19(6), 1565–1577.
Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54(2), 4–20.
Kokociński, M., Dziga, D., Antosiak, A., & Soininen, J. (2021). Are bacterio-and phytoplankton community compositions related in lakes differing in their cyanobacteria contribution and physico-chemical properties? Genes, 12(6), 850–855.
Komárek, J. (2014). Modern classification of cyanobacteria. In N. V. Sharma, A. K. Rai, & L. J. Stal (Eds.), Cyanobacteria: An economic perspective (pp. 21–39). John Wiley & Sons, Ltd.
Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota, 1. Teil: Chroococcales. In H. Ettl., G. Gärtner, H. Heynig, & D. Mollenhauer (Eds.), Subwasserflora von Mitteleuropa. Heidelberg & Berlin: Spektrum, Akademischer Verlag.
Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota. 2. Oscillatoriales. In B. Büdel, G. Gärtner, L. Krienitz, & Mi. Schagerl (Eds.), Süβwasserflora von Mitteleuropa. Spektrum, Akademischer Verlag.
Komárková-Legnerová, J. (1969). The systematics and ontogenesis of the genera Ankistrodesmus Corda and Monoraphidium gen. nov. In B. Fott (Ed.), Studies in Phycology (pp. 75–144). Stuttgart: Schweizerbart’sche.
Krammer K., & Lange-Bertalot, H. (1986). Bacillaríophyceae, 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süβwasserflora von Mitteleuropa. Gustav Fischer Verlag.
Kudela, R., Berdalet, E., Enevoldsen, H., Pitcher, G., Raine, & Urban, R. (2017). "GEOHAB–The global ecology and oceanography of harmful algal blooms program: motivation, goals, and legacy". Oceanography, 30(1), 12–21.
Lozano, V. L. (2022). Hidden impacts of environmental stressors on freshwater communities could be revealed at lower concentrations by correlation of abundances network analyses: An example with herbicides glyphosate, 2, 4‐D, and their mixtures. Austral Ecology, 47(5), 1144–1153.
Lu, L., Tang, Q., Li, H., & Li, Z., (2022). Damming river shapes distinct patterns and processes of planktonic bacterial and microeukaryotic communities. Environmental Microbiology, 24(4), 1760–1774.
Moschini, C., Bortoli, E., Pinto, P., Nishimura, L., Freitas, M., Pompeo, F., & Dorr, F. (2009). Cyanobacteria and cyanotoxin in the Billings reservoir (São Paulo, SP, Brazil). Limnetica, 28(1), 273–282.
O’Farrell, I., Motta, C., Forastier, M., Polla, W., Otaño, S., Meichtry, N., Devercelli, M., & Lombardo, R. (2019). Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina. Harmful Algae, 83(1), 1–13.
O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles 584 of eutrophication and climate change. Harmful Algae, 14, 313–334.
Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 65, 995–1010.
Paerl, H. W., & Otten, T. G. (2016). Duelling “CyanoHABs”: unravelling the environmental drivers controlling dominance and 576 succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environmental Microbiology, 18, 316–324.
Rüger, L., Feng, K., Dumack, K., Freudenthal, J., Chen, Y., Sun, R., & Bonkowski, M. (2021). Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of maize (Zea mays L.). Frontiers in Microbiology, 12, 614501.
Salusso, M. M., & Moraña, L. (2018). Comparative reservoir limnology in Juramento (Salta) and Salí-Dulce (Tucumán) Basins in Argentina. Revista de Biología Tropical, 66(1), 415–427.
Sant’Anna, C., Silva, M., Carvhalom M., Gelmego, M., & Azevedo, M. (2007). Planktic cyanobacteria from upper Tiete basin reservoir, SP, Brasil. Brazilian Journal of Botany, 30(1), 1–17.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.
Utermöhl, H. (1958). On the perfecting of quantitative phytoplankton method. International Association of Theory and Applications of Limnology Proceedings, 9, 1–38.
Venrick, E. L. (1978). How many cells to count?. Phytoplankton Manual, 6, 167–180.
World Health Organization. (2003). Guidelines for Safe Recreational Water Environments, Volume 1: Coastal and Fresh Waters. World Health Organization.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Revista de Biología Tropical