Abstract
Introduction: The birds in tropical cities are subject to changes in community composition and structure based on landscape properties and habitat heterogeneity. Urban landscapes offer a set of fragmented habitats restricting dispersion and promoting the metacommunity structure of birds. Objective: To analyze the structure of an urban bird community with a meta-community perspective. Methods: With a spatial array of 60 bird sampling points between May 2015 and February 2016, and estimations of landscape metrics with a satellite image classification, we measured the coherence, turnover, and boundary clumping of three subsets of birds to fit a metacommunity structure pattern and correlate with landscape properties of Tuxtla Gutierrez, a neotropical city with potential for bird conservation. Results: The bird species composition comprises a dominant subset of exotic and synurbic species, another of resident abundant species, and one of rare native species. The dominant species seem to be determined by a Clementsian structure, associated with a bird community with a similar response to the environmental gradient. Both dominant and rare species showed a nested structure associated with environmental filtering processes, such as the amount of available habitat. The occurrence and distribution of abundant to rare species composition were associated with the amount of natural vegetation cover, whereas the dominant species abundance with the extension of urban coverage. Conclusions: The bird species composition in urban landscapes of tropical dry forest regions can be structured as a metacommunity in response to a gradient of vegetation fragmentation due to anthropogenic changes. Synurbic and native species do not show a homogenization of diversity composition. To ensure the conditions for bird diversity conservation in tropical urban landscapes, knowledge of the correlation of landscape elements with community structure and habitat conditions in fragmented environments is needed.
References
Alberti, M., & Wang, T. (2022). Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecology Letters, 25, 1027–1045.
Altamirano-González-Ortega, M. A., Guzmán-Hernández, J., Luna-Reyes, R., Riechers-Pérez, A., & Vidal-López, R. (2007). Vertebrados terrestres del parque nacional Cañón del Sumidero, Chiapas, México [Base de datos]. Instituto de Historia Natural y Ecología. Dirección de Investigación, bases de datos SNIB2010-CONABIO, proyecto No. BK003. México, D.F.
Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., MacGregor-Fors, I., McDonnell, M., Mörtberg, U., … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B, Biological Sciences, 281(1780), 20133330.
Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology & Biogeography, 19(1), 134–143.
Bellocq, M. I., Leveau, L. M., & Filloy, J. (2016). Urbanization and bird communities, spatial and temporal patterns emerging from southern South America. In E. Murgui, & M. Hedblom (Eds.), Ecology and conservation of birds in urban environments (pp. 35–54). Springer.
Beninde, J., Veith, M., & Hochkirch, A. (2015). Biodiversity in cities needs space, a meta-analysis of factors determining intra-urban biodiversity variation. Ecology Letters, 18, 581–592.
Buckland, S. T. (2006). Point transect surveys for songbirds, robust methodologies. The Auk, 123(12), 345–357.
Charre, G., Zavala, H. A., Néve, G., Ponce-Mendoza, A., & Corcuera, P. (2013). Relationship between habitat traits and bird diversity and composition in selected urban green areas of Mexico City. Ornitología Neotropical, 24(3), 275–293.
Chiu, C. H., & Chao, A. (2014). Distance-based functional diversity measures & their decomposition, a framework based on hill numbers. PLoS ONE, 9(7), e100014.
Clergeau, P., Jokimäki, J., & Savard, J. P. L. (2001). Are urban bird communities influenced by the bird diversity of adjacent landscapes? Journal of Applied Ecology, 38(5), 1122–1134.
Díaz-Pascacio, E., Ortega-Argueta, A., Castillo-Uzcanga, M. M., & Ramírez-Marcial, N. (2018). Influence of land use on the riparian zone condition along an urban-rural gradient on the Sabinal River, Mexico. Botanical Sciences, 96(2), 180–199.
Dallas, T. (2014). Metacom, an R package for the analysis of metacommunity structure. Ecography, 37, 402–405. https,//doi.org/10.1111/j.1600-0587.2013.00695.x.
Escobar-Ibañez, J. F., Rueda-Hernández, R., & MacGregor-Fors, I. (2020). The greener the better! Avian communities across a neotropical gradient of urbanization density. Frontiers in Ecology & Evolution, 8, 285.
Eyster, H. S., Kreitzman, D., & Kai, M. C. (2022). Functional traits and metacommunity theory reveal that habitat filtering and competition maintain bird diversity in a human shared landscape. Ecography, 2022(11), e06240.
Faeth, S. H., Bang, C., & Saari, S. (2011). Urban biodiversity, patterns and mechanisms. Annals of the New York Academy of Sciences, 1223(1), 69–81.
Ferenc, M., Sedláček, O., Fuchs, R., Dinetti, M., Fraissinet, M., & Storch, D. (2014). Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Global Ecology & Biogeography, 23(4), 479–489.
Feeley, K. J., Gillespie, T. W., Lebbin, D. J., & Walter, H. S. (2007). Species characteristics associated with extinction vulnerability and nestedness rankings of birds in tropical forest fragments. Animal Conservation, 10(4), 493–501.
Francis, R., & Chadwick, M. A. (2011). What makes a species synurbic? Applied Geography, 32(2), 514–521.
Gómez-Moreno, V. del C., González-Gaona, O. J., Niño-Maldonado, S., Azuara-Domínguez, A., & Barrientos-Lozano, L. (2023). Urban green areas with mixed vegetation favor avian richness and abundance in Ciudad Victoria, Tamaulipas, Mexico. Revista de Biología Tropical, 71(1), e50729.
Gordon, C. E., & Ornelas, J. F. (2000). Comparing endemism and habitat restriction in Mesoamerican tropical deciduous forest birds, implications for biodiversity conservation planning. Bird Conservation International, 10(4), 289–303.
Grabchak, M., Marcon, E., Lang, G., & Zhang, Z. (2017). The generalized simpson's entropy is a measure of biodiversity. PLoS ONE, 12(3), e0173305.
Henriques-Silva, R., Lindo, Z., & Peres-Neto, P. (2013). A community of metacommunities, exploring patterns in species distributions across large geographical areas. Ecology, 94(3), 627–39.
Holyoak, M., Leibold, M. A., & Holt, R. D. (2005). Metacommunities: spatial dynamics and ecological communities. University of Chicago Press.
Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analysis, testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69(1), 1–24.
Leibold, M. A., & Mikkelson G. M. (2002). Coherence, species turnover, and boundary clumping, elements of meta-community structure. Oikos, 97(2), 237–250.
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7(7), 601–613.
Lepczyk, C. A., La Sorte, F. A., Aronson, M. Goddard, M. A. MacGregor-Fors, I., Nilon, C. H., & Warren, P. S. (2017). Global patterns and drivers of urban bird diversity. In E. Murgui, & M. Hedblom (Eds.), Ecology and conservation of birds in urban environments (pp. 13–33). Springer.
Leveau, L. M., Leveau, C. M., Villegas, M., Cursach, J. A., & Suazo, C. G. (2017). Bird communities along urbanization gradients, a comparative analysis among three neotropical cities. Ornitología Neotropical, 28, 77–87.
López-González, C., Presley, S. J., Lozano, A., Stevens, R. D., & Higgins, C. L. (2012). Metacommunity analysis of mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. Journal of Biogeography, 39(1), 177–192.
MacGregor-Fors, I., & Schondube, J. E. (2012). Urbanizing the wild, shifts in bird communities associated to small human settlements. Revista Mexicana de Biodiversidad, 83(2), 477–486.
MacGregor-Fors, I., Escobar-Ibáñez, J. F., Schondube, E., Zuria, I., Ortega-Álvarez, R., Sosa-López, J. R., Ruvalcaba-Ortega, I., Almazán-Núñez, R. C., Arellano-Delgado, M., Arriaga-Weiss, S. L., Calvo, A., Chapa-Vargas, L., Silvestre-Lara, P. X., García-Chávez, J. H., Hinojosa, O., Koller-González, J. M., Lara, C., López de Aquino, S., López-Santillán, D., … Vega-Rivera, J. H. (2021). The urban contrast: A nationwide assessment of avian diversity in Mexican cities. Science of the Total Environment, 753, 141915.
MacGregor-Fors, I., Morales, L., Quesada, J., & Schondube, J. (2010). Relationship between the presence of House Sparrows (Passer domesticus) and Neotropical bird community structure and diversity. Biological Invasions, 12, 87–96.
Marcon, E. & Hérault, B. (2015). Entropart, an R package to measure and partition diversity. Journal of Statistical Software, 67(8), 1–26.
Martin, P. R., & Bonier, F. (2018). Species interactions limit the occurrence of urban-adapted birds in cities. Proceedings of the Royal Society B, Biological Sciences, 115(49), E11495–E11504.
Martin-Etchegaray, A., Esquivel, M. A., & Weiler, G. A. (2018). Estructura de las comunidades de aves de cuatro áreas verdes de la ciudad de Asunción, Paraguay. Revista de Ciencias Ambientales, 52(2), 184–207.
Marzluff, J. M. (2016). A decadal review of urban ornithology and a prospectus for the future. Ibis, 159(1), 1–13.
Mateo-Tomás, P., Olea, P. P., Selva, N., & Sánchez-Zapata, J. A. (2019). Species and individual replacements contribute more than nestedness to shape vertebrate scavenger metacommunities. Ecography, 42, 365–375.
McDonnell, M. J., & Hahs, A. K. (2008). The use of gradient analysis studies in advancing our undersetting of the ecology of urbanizing landscapes, current status and future directions. Landscape Ecology, 23(10), 1143–1155.
McGarigal, K., & Marks, B. (1995). FRAGSTATS, spatial pattern analysis program for quantifying landscape structure. U.S. Department of Agriculture, Forest Service.
Ochoa-Ochoa, L. M., & Whittaker, R. J. (2014). Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico. Journal of Tropical Ecology, 30(6), 537–549.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., …Weedon, J. (2007). Vegan, community ecology package. R package version 2.5-5 [Software]. CRAN. http.//cran.r-project.org/
Pineda-Diez de Bonilla, E., León-Cortés, J. L., & Rangel-Salazar, J. L. (2012). Diversity of bird feeding guilds in relation to habitat heterogeneity and land-use cover in a human-modified landscape in southern Mexico. Journal of Tropical Ecology, 28(4), 369–376.
Presley, S. J., Higgins, C. L., & Willig, M. R. (2010). A comprehensive framework for the evaluation of metacommunity structure. Oikos, 119(6), 908–917.
Presley, S. J., Cisneros, L. M., Patterson, B. D., & Willig, M. R. (2012). Vertebrate metacommunity structure along an extensive elevational gradient in the tropics, a comparison of bats, rodents and birds. Global Ecology & Biogeography, 21(10), 968–976.
QGIS Development Team. (2015). QGIS. Version 3.22 [Software]. QGIS Development Team. http://www.qgis. org/pt_BR/site/index.html
R Core Team (2015). R, a language and environment for statistical computing [Software]. R Foundation for Statistical Computing, Vienna, Austria.
Ralph, C., Geupel, R., Pyle, P., Martin-Thomas, E., & DeSante, F. (1993). Handbook of field methods for monitoring landbirds. Pacific Southwest Research Station, Forest Service.
Rojas, C., De la Barrera, F., Vidaurrázaga-Aránguiz, T., & Munizaga, J. M. (2017). Efectos de la urbanización sobre la conectividad ecológica de paisajes metropolitanos. Revista Universitaria de Geografía, 28(2), 155–182.
Silva, C. P., Sepúlveda, R. D., & Barbosa, O. (2016). Nonrandom filtering effect on birds, species and guilds response to urbanization. Ecology & Evolution, 6(11), 3711–3720.
Silva, M., García, A., & Hernando, A. (2015). Crecimiento de la mancha urbana en la Zona Metropolitana de Tuxtla Gutiérrez (Chiapas, México). Quehacer Científico en Chiapas, 2(2), 35–41.
Soberón, J., & Llorente, J. (1993). The use of species accumulation functions for the prediction of species richness. Conservation Biology, 7(3), 480–488.
Sol, D., Lapiedra, O., & González-Lagos, C. (2013). Behavioral adjustments for life in the city. Animal Behaviour, 85(5), 1101–1112.
U. S. Geological Survey. (2016). Landsat 8, Scene ID = LC80220482015358LGN00. USGS. http://earthexplorer.ugs.gov/
Wang, S., Lamy, T., Hallett, L. M., & Loreau, M. (2019). Stability and synchrony across ecological hierarchies in heterogeneous metacommunities, linking theory to data. Ecography, 42(6), 1200–1211.
##plugins.facebook.comentarios##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Revista de Biología Tropical