Abstract
Introduction: Methanogenic archaea (MA), participate in the anaerobic mineralization of organic matter in mangrove sediments, their activity is related to atmospheric warming due to the production of methane; several environmental variables can influence the presence of MA and methane production in these sediments. Objective: To analyze, through culture-dependent techniques, viable methanogenic archaea (VMA) in the sediments, and the production of methane from acetate in different climatic periods in the mangrove El Morro-La Mancha, Veracruz, Gulf of Mexico. Methods: From May to November 2019, following a salinity transect, sediment samples from El Morro-La Mancha mangrove were collected at three locations, in three different climatic seasons, dry (May), rainy (October) and northern (November) (N = 9). VMA in the sediments was quantified using the Most Probable Number (MPN) technique with acetate and methanol as substrates. The influence of sulfate on methane production was analyzed from acetate in microcosm by gas chromatography and the chemical variables of salinity, pH, Eh, carbohydrates, organic content, and carbonates in the sediments were evaluated. Results: The abundance of VMA was 102 to 108 MPN/g of wet sediment, higher than that reported in other studies, this abundance was higher when methanol (104-108 MPN/g sediment) was used as substrate, compared to acetate (102-105 MPN/g sediment); methane production in the microcosms increased in sulfate-free conditions (29.78-929.75 nmol CH4/month) and in the sediments of the rainy season. Conclusion: The influence of the chemical conditions of the mangrove sediments on the methanogenic dynamics is highlighted, determining that in the rainy season, the decrease in salinity, more electronegative Eh, and the increase in organic fractions favored the methanogenesis.
Objetive: To analyze, through culture-dependent techniques, the abundance of MA and the production of methane in different climatic periods in the mangrove El Morro-La Mancha, Veracruz, Gulf of Mexico.
Methods: From May to November 2019, following a salinity transect, sediment samples from El Morro-La Mancha mangrove were collected at three sampling locations, in three different climatic seasons, dry (May), rainy (October) and northern (November) (n=9). The methanogenic abundance in the sediments was quantified using the Most Probable Number (MPN) technique with acetate and methanol as substrates; methane production was analyzed from acetate by gas chromatography and the chemical variables of salinity, pH, Eh, carbohydrates, organic content and carbonates in the sediments were evaluated.
Results: The abundance of MA was 102 to 108 cells/g of wet sediment, higher to that reported in other studies, this abundance was higher when methanol (104 - 108 cells/g sediment) was used as substrate, compared to acetate (102 - 105 cells/sediment); methane production increased in rains with 13% compared to dry.
Conclusion: Highlighted the influence of the chemical conditions of the mangrove sediments on the methanogenic dynamics, determining that in the rainy season, the decrease in salinity, Eh more electronegative and the increase in organic fractions favored both methanogenic abundance as methane production.
References
Achtnich, C., Bak, F., & Conrad, R. (1995). Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility Soils, 19, 65–72. https://doi.org/10.1007/BF00336349
Alongi, D. M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29(3), 331–349. https://doi.org/10.1017/S0376892902000231
APHA (American Public Health Association), American Water Works Association., & Water Environment Federation. (2005). Standard Methods for the Examination of Water and Wastewater. APHA Press.
Arai, H., Inubushi, K., & Chiu, C. Y. (2021). Dynamics of methane in mangrove forest: will it worsen with decreasing mangrove forests? Forests, 12, 1204. https://doi.org/10.3390/f12091204
Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., & Wolfe, R. S. (1979). Methanogens: reevaluation of a unique biological group. Microbiological Reviews, 43(2), 260–296. https://doi.org/10.1128/mr.43.2.260-296.1979
Bhattacharyya, A., Majumder, N. S., Basak, P., Mukherji, S., Roy, D., Nag, S., Haldar, A., Chattopadhyay, D., Mitra, S., Bhattacharyya, M., & Ghosh, A. (2015). Diversity and distribution of Archaea in the mangrove sediment of sundarbans. Archaea, 968582, 14. https://doi.org/10.1155/2015/968582
Børsheim, K. Y., Myklestad, S. M., & Sneli, J. A. (1999). Monthly profiles of DOC, mono- and polysaccharides at two locations in the Trondheimsfjord (Norway) during two years. Marine Chemistry, 63(3–4), 255–272. https://doi.org/10.1016/S0304-4203(98)00066-8
Bueno de Mesquita, C. P., Wu, D., & Tringe, S. G. (2023). Methyl-based methanogenesis: an ecological and genomic review. Microbiology and Molecular Biology Reviews, 87(1), 1–29. https://doi.org/10.1128/mmbr.00024-22
Canfield, D., Kristensen, E., & Thamdrup, B. (2005). The methane cycle. In A. Southward, P. A. Tyler, C. M. Young, & L. A. Fuiman (Eds.), Advances in Marine Biology: Aquatic Geomicrobiology (pp. 383–418). Elsevier Inc.
Conrad, R. (2020). Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review. Pedosphere, 30(1), 25–39. https://doi.org/10.1016/S1002-0160(18)60052-9
Conrad, R., & Claus, P. (2005). Contribution of methanol to the production of methane and its 13C-isotopic signature in anoxic rice field soil. Biogeochemistry, 73, 381–393. https://doi.org/10.1007/s10533-004-0366-9
De La Lanza-Espino, G. (1994). Química de las lagunas costeras y el litoral mexicano. In G. De La Lanza-Espino, & C. Cáceres (Eds.), Lagunas costeras y el litoral mexicano (pp. 127–198). UABCS.
Dias, A. C. F., Dini-Andreote, F., Taketani, R. G., Tsai, S. M., Azevedo, J. L., de Melo, I. S., & Andreote, F. D. (2011). Archaeal communities in the sediments of three contrasting mangroves. Journal of Soils and Sediments, 11, 1466–1476. https://doi.org/10.1007/s11368-011-0423-7
Díaz, S., Aguirre-León, A., Mendoza-Sánchez, E., & Lara-Domínguez, A. L. (2017). Factores ambientales que influyen en la ictiofauna de la laguna La Mancha, sitio Ramsar, Golfo de México. Revista de Biología Tropical, 66(1), 246. https://doi.org/10.15517/rbt.v66i1.28495
Euler, S., Jeffrey, L. C., Maher, D. T., Mackenzie, D., & Tait, D. R. (2020). Shifts in methanogenic archaea communities and methane dynamics along a subtropical estuarine land use gradient. PLOS ONE, 15(11), e0242339. https://doi.org/10.1371/journal.pone.0242339
Holmer, M., & Kristensen, E. (1994). Coexistence of sulfate reduction and methane production in an organic-rich sediment. Marine Ecology Progress Series, 107, 177–184. https://doi.org/10.3354/meps107177
Howarth, R. W. (1993). Microbial processes in salt-marsh sediments. In T. E. Ford (Ed.), Aquatic Microbiology (pp. 239–260). Blackwell Scientific Publications.
Infante-Cangrejo, V., & Donato-Rondón, J. C. (2017). Respuesta de la clorofila y el metabolismo de un arroyo andino al aumento de temperatura en un experimento ex situ. Acta Biológica Colombiana, 22(2), 191–198 https://doi.org/10.15446/abc.v22n2.60741
Jing, H., Cheung, S., Zhou, Z., Wu, C., Nagarajan, S., & Liu, H. (2016). Spatial variations of the methanogenic communities in the sediments of tropical mangroves. PLOS ONE, 11(9), e0161065. https://doi.org/10.1371/journal.pone.0161065
Kurth, J. M., Op den Camp, H. J. M., & Welte, C. U. (2020). Several ways one goal-methanogenesis from unconventional substrates. Applied Microbiology and Biotechnology, 104, 6839–6854. https://doi.org/10.1007/s00253-020-10724-7
Lara-Domínguez, A. L., Day, J. W., Yáñez-Arancibia, A., & Sainz-Hernández, E. (2006). A dynamic characterization of water flux through a tropical ephemeral inlet, La Mancha Lagoon, Gulf of Mexico. In V. P. Singh, & Y. Ju-Xu (Eds.), Coastal hydrology and processes (pp. 413–422). Water Resources Publication.
Li, C. (2000). Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259–276.
Liu, Y., & Whitman, W. B. (2008). Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Annals of the New York Academy of Sciences, 1125(1), 171–189. https://doi.org/10.1196/annals.1419.019
López-Portillo, J., Lara-Domínguez, A. L., Ávila-Ángeles, A., & Vázquez-Lule, A. D. (2009). Caracterización del sitio de manglar La Mancha. In CONABIO (Ed.), Sitios de manglar con relevancia biológica y con necesidades de rehabilitación ecológica (pp. 1–17). CONABIO.
Lozano, S., Vásquez, C., Rivera-Rondón, C. A., Zapata, A., & Ortiz-Moreno, M. L. (2019). Efecto de la vegetación riparia sobre el fitoperifiton de humedales en la Orinoquía colombiana. Acta Biológica Colombiana, 24(1), 67–85. https://doi.org/10.15446/abc.v24n1.69086
Lyimo, T. J., Pol, A., & Op den Camp, H. J. M. (2002a). Methane emission, sulphide concentration and redox potential profiles in Mtoni Mangrove Sediment, Tanzania. Western Indian Ocean Journal Marine Science, 1(1), 71–80. http://hdl.handle.net/1834/28
Lyimo, T. J., Pol, A., & Op den Camp, H. J. M. (2002b). Sulfate reduction and methanogenesis in sediments of Mtoni Mangrove Forest, Tanzania. AMBIO: A Journal of the Human Environment, 31(7), 614–616. https://doi.org/10.1579/0044-7447-31.7.614
Lyimo, T. J., Pol, A., Jetten, M. S. M., & Op den Camp, H. J. M. (2009). Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiology Letters, 291(2), 247–253. https://doi.org/10.1111/j.1574-6968.2008.01464.x
Lyu, Z., Shao, N., Akinyemi, T., & Whitman, W. B. (2018). Methanogenesis. Current Biology, 28, R727–R732.
MacFarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69(9), 1454–1464. https://doi.org/10.1016/j.chemosphere.2007.04.059
Mohanraju, R., & Natarajan, R. (1992). Methanogenic bacteria in mangrove sediments. Hydrobiologia, 247(1–3), 187–193. https://doi.org/10.1007/BF00008218
Mohanraju, R., Rajagopal, B. S., & Daniels, L. (1997). Isolation and characterization of a methanogenic bacterium from mangrove sediments. Journal of Marine Biotechnology, 5, 147–152.
Moreno-Casasola, P. (2003). Ficha Informativa de los Humedales de Ramsar (FIR). https://rsistest.ramsar.org/RISapp/files/RISrep/MX1336RIS.pdf
Norma Oficial Mexicana (NOM-059-ECOL-2010). (2010). Protección ambiental - especies nativas de México de flora y fauna silvestres - categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - lista de especies en riesgo.
Ozuolmez, D., Na, H., Lever, M. A., Kjeldsen, K. U., Jørgensen, B. B., & Plugge, C. M. (2015). Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Frontiers in Microbiology, 6(492), 1–12. https://doi.org/10.3389/fmicb.2015.00492
Paez-Osuna, F., Bojórquez-Leyva, H., & Green-Ruiz, C. (1998). Total carbohydrates: organic carbon in lagoon sediments as an indicator of organic effluents from agriculture and sugar-cane industry. Environmental Pollution, 102(2–3), 321–326. https://doi.org/10.1016/S0269-7491(98)00045-1
Parkes, R. J., Cragg, B. A., Banning, N., Brock, F., Webster, G., Fry, J. C., Hornibrook, E., Pancost, R. D., Kelly, S., Knab, N., Jørgensen, B. B., Rinna, J., & Weightman, A. J. (2007). Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environmental Microbiology, 9(5), 1146–1161. https://doi.org/10.1111/j.1462-2920.2006.01237.x
Preston, M. R., & Prodduturu, P. (1992). Tidal variations of particulate carbohydrates in the Mersey estuary. Estuarine, Coastal and Shelf Science, 34(1), 37–48. https://doi.org/10.1016/S0272-7714(05)80125-8
Purvaja, R., Ramesh, R., & Frenzel, P. (2004). Plant-mediated methane emission from an Indian mangrove. Global Change Biology, 10(11), 1825–1834. https://doi.org/10.1111/j.1365-2486.2004.00834.x
R Core Team (2020). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https:www.R-project.org/
SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales). (2016). Los Manglares Mexicanos. https://www.gob.mx/semarnat/articulos/manglares-mexicanos.
Stolzy, L. H., Focht, D. D., & Flühler, H. (1981). Indicators of soil aeration status. Flora, 171(3), 236–265. https://doi.org/10.1016/S0367-2530(17)31269-0
Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada.
Taketani, R. G., Yoshiura, C. A., Dias, A. C. F., Andreote, F. D., & Tsai, S. M. (2010). Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoek, 97(4), 401–411. https://doi.org/10.1007/s10482-010-9422-8
Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 6(8), 579–591. https://doi.org/10.1038/nrmicro1931
Torres-Alvarado, M. D. R., Calva-Benítez, L. G., Álvarez-Hernández, S., & Trejo-Aguilar, G. (2016). Anaerobic microbiota: spatial-temporal changes in the sediment of a tropical coastal lagoon with ephemeral inlet in the Gulf of Mexico. Revista de Biología Tropical, 64(4), 1759–1770.
Van den Wollenberg, A. L. (1977). Redundancy analysis an alternative for canonical correlation analysis. Psychometrika, 42(2), 207–219. https://doi.org/10.1007/BF02294050
Wagner, A. O., Lins, P., & Illmer, P. (2012). A simple method for the enumeration of methanogens by most probable number counting. Biomass and Bioenergy, 45, 311–314. https://doi.org/10.1016/j.biombioe.2012.06.015
Wilms, R., Sass, H., Köpke, B., Cypionka, H., & Engelen, B. (2007). Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiology Ecology, 59(3), 611–621. https://doi.org/10.1111/j.1574-6941.2006.00225.x
Yasawong, M., Kanjanavas, P., Areekit, S., & Chansiri, K. (2013). Archaea biodiversity from Chol Buri mangrove forest, Thailand. International Scientific: Journal of Medical and Biological Sciences, 1(2), 9.
Zar, J. H. (1999). Bioestatistical Analysis. Prentice Hall.
Zhang, C. J., Chen, Y. L., Sun, Y. H., Pan, J., Cai, M. W., & Li, M. (2021). Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Marine Life Science & Tecnology, 3, 352–262. https://doi.org/10.1007/s42995-020-00081-9
Zhou, Y., Zhao, B., Peng, Y., & Chen, G. (2010). Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Marine Pollution Bulletin, 60(8), 1319–1324. https://doi.org/10.1016/j.marpolbul.2010.03.010
Zhou, Z., Meng, H., Liu, Y., Gu, J. D., & Li, M. (2017). Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Frontiers in Microbiology, 8, 2148. https://doi.org/10.3389/fmicb.2017.02148
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Revista de Biología Tropical