Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Variation of the diet of the sea urchin (Diadema mexicanum (Diadematoida: Diadematidae)) according to its size in the Eastern Tropical Pacific
PDF
HTML
EPUB

Keywords

organic matter; coral reefs; stomach content; carbonates; growth; bioerosion.
materia orgánica; arrecifes de coral; contenido estomacal; carbonatos; crecimiento; bioerosión.

How to Cite

Bogantes-Retana, A., Barquero-Jackson, J., Vargas-Guerrero, M., & Alvarado, J. J. (2024). Variation of the diet of the sea urchin (Diadema mexicanum (Diadematoida: Diadematidae)) according to its size in the Eastern Tropical Pacific. Revista De Biología Tropical, 72(S1), e58602. https://doi.org/10.15517/rev.biol.trop.v72iS1.58602

Abstract

Introduction: The sea urchin Diadema mexicanum, due to its bioerosion activity, is considered of ecological importance. This phenomenon could negatively or positively affect coral reef ecosystems. The bioerosion process varies according to the abundance and size of the sea urchin.

Objective: Juvenile organisms possess different metabolic needs compared to adults, so knowing their stomach content according to size allows us to quantify the selection of substrate bioeroded.

Methods: To determine this, D. mexicanum individuals were collected in 12 sites from January 2009 to September 2010 along the Eastern Tropical Pacific coast. The stomach content was categorized in Carbonated Fraction (CF), Non-Carbonated Fraction (NCF), and Organic Matter (OM). Stomach content was analyzed according to a) juvenile (< 2.5 cm) or adult (> 2.5 cm) stage and b) locality.

Results: Juveniles presented the following stomach content average percentages: 20.7 % OM, 12 % NCF and 67.9 % CF; and adults: 11.4 % OM, 14.8 % NCF and 73.8 % CF. Based on a Wilcoxon test and a Kendall linear regression, the following results were obtained. The carbonated fraction in the stomach increased by 0.47 units on average for every cm of growth (p < 0.05). OM consumed by D. mexicanum increases only 0.05 units for every cm of growth (p < 0.05). We found a difference of stomach content depending on the site (p < 0.05) and life stage (p < 0.05). Localities like Huatulco and Coco presented significant differences that could be related to local oceanographic conditions.

Conclusions: We relate these changes of the stomach fractions to the necessity of the juvenile sea urchins for nutrients to maintain their growth. The amount of OM is crucial for the development of early stages, meaning that there is a difference in substrate selection associated with growth.

https://doi.org/10.15517/rev.biol.trop..v72iS1.58602
PDF
HTML
EPUB

References

Alvarado, J., Cortés, J., Guzman, H., & Reyes-Bonilla, H. (2016a). Bioerosion by the sea urchin Diadema mexicanum along Eastern Tropical Pacific coral reefs. Marine Ecology, 37(5), 1088–1102. https://doi.org/10.1111/maec.12372

Alvarado, J., Cortés, J., Guzman, H., & Reyes-Bonilla, H. (2016b). Distribution, size and diet of Diadema mexicanum (Echinoidea) along the Eastern Tropical Pacific coral reefs. Aquatic Biology, 24, 151–161. https://doi.org/10.3354/ab00645

Alvarado, J. J., Reyes-Bonilla, H., & Benítez-Villalobos, F. (2015). Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental: lo que sabemos y perspectivas futuras (Diadematoida: Diadematidae). Revista de Biología Tropical, 63(S2), 135–157. http://dx.doi.org/10.15517/rbt.v63i2.23140

Alves, F., Chícharo, L., Serrao, E., & Abreu, A. D. (2003). Grazing by Diadema antillarum (Philippi) upon algal communities on rocky substrates. Scientia Marina, 67(3), 307–311. https://doi.org/10.3989/scimar.2003.67n3307

Bak, R. P. M. (1990). Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Marine Ecology Progress Series, 66, 267–272.

Benítez-Villalobos, F., Gómez, M. D., & Pérez, R. L. (2008). Temporal variation of the sea urchin Diadema mexicanum population density at Bahias de Huatulco, Western Mexico. Revista de Biología Tropical, 56(S3), 255–263. https://doi.org/10.15517/rbt.v56i3.27140

Benítez-Villalobos, F., Ávila-Poveda, O. H., Díaz-Martínez, J. P., & Bravo-Ruiz, A. R. (2015). Gonad development stages and reproductive traits of Diadema mexicanum (Echinodermata: Echinoidea) from Oaxaca, Mexico. Invertebrate Reproduction & Development, 59(4), 237–249. http ://dx.doi.org/10.1080/07924259.2015.1108935

Cabanillas-Terán, N., Loor-Andrade, P., Rodríguez-Barreras, R., & Cortés, J. (2016). Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador. PeerJ, 4, e1578. https://doi.org/10.7717/peerj.1578

Carreiro-Silva, M., & McClanahan, T. R. (2001). Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing. Journal of Experimental Marine Biology and Ecology, 262, 133–153. https://doi.org/10.1016/S0022-0981(01)00288-X

Eakin, C. M. (2001). A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bulletin of Marine Science, 69(1), 171–186.

Fadl, A. E. A., Mahfouz, M. E., El-Gamal, M. M. T., & Heyland, A. (2018). Onset of feeding in juvenile sea urchins and its relation to nutrient signalling. Invertebrate Reproduction & Development, 63(1), 11–22. https://doi.org/10.1080/07924259.2018.1513873

Glynn, P. W. (1988). El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the Eastern Pacific. Galaxea, 7(2), 129–160. https://doi.org/10.1007/s00227-017-3175-0

Glynn, P. W., & Morales, G. E. L. (1997). Coral reefs of Huatulco, West Mexico: reef development in upwelling Gulf of Tehuantepec. Revista de Biología Tropical, 45(3), 1033–1047.

Graham, J. E., Banks, S. A., Bessudo, S., Cortés, J., Guzmán, H. M., Henderson, S., Martinez, C., Rivera, F., Soler, G., Ruiz, D., & Zapata, F. A. (2011). Variation in reef fish and invertebrate communities with level of protection from fishing across the Eastern Tropical Pacific seascape. Global Ecology and Biogeography, 20(5), 730–743. https://doi.org/10.1111/j.1466-8238.2010.00642.x

Griffin, S. P., García, R. P., & Weil, E. (2003). Bioerosion in coral reef communities in southwest Puerto Rico by the sea urchin Echinometra viridis. Marine Biology, 143, 79–84. https://doi.org/10.1007/s00227-003-1056-1

Hawkins, C. M. (1981) Efficiency of organic matter absorption by the tropical echinoid Diadema antillarum Philippi fed non-macrophytic algae. Journal of Experimental Marine Biology and Ecology, 49, 245–253. https://doi.org/10.1016/0022-0981(81)90074-5

Hawkins, C. M., & Lewis, J. B. (1982). Ecological energetics of the tropical sea urchin Diadema antillarum Philippi in Barbados, West Indies. Estuarine, Coastal and Shelf Science, 15, 645–669. https://doi.org/10.1016/0272-7714(82)90077-4

Herrera-Escalante, T., López-Pérez, R. A., & Leyte-Morales, G. E. (2005). Bioerosion caused by the sea urchin Diadema mexicanum (Echinodermata: Echinoidea) at Bahías de Huatulco, Western Mexico. Revista de Biología Tropical, 53(S3), 263–273. https://doi.org/10.15517/rbt.v53i3.26784

Hutchings, P. (2011). Bioerosion. In: G, Gabioch, P. Davies, T. J. Done, E. Guschler, I. G. Macintyre, R. Wood, C. D. Woodroffe, & D. Hopley (Eds), Encyclopedia of Modern Coral Reefs: Structure, form, and Process (pp. 139–156). Springer.

Lawrence, J. M. (2000). Conflict between somatic and gonadal growth in sea urchins: a review [Technical Inform]. Florida Sea Grant College Program.

López-Pérez, A., & López-López, D. A. (2016). Impacto bioerosivo de Diadema mexicanum en arrecifes de coral del Pacífico sur mexicano. Ciencias marinas, 42(1), 67–79. https://doi.org/10.7773/cm.v42i1.2586

McClanahan, T. R., Kamukuru, A. T., Muthiga, N. A., Gilagabher, M., & Obura, D. (1996). Effect of sea urchin reductions on algae, coral, and fish populations. Biological Conservation, 10, 136–154. https://doi.org/10.1046/j.1523-1739.1996.10010136.x

Meidel, S. K., & Scheibling, R. E. (1999). Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Marine Biology, 134, 155–166. https://doi.org/10.1007/s002270050534

Muthiga, N. A., & McClanahan, T. R. (2007). Ecology of Diadema. In J. M. Lawrence (Ed.), Edible Sea Urchins: Biology and Ecology (pp. 205–219). Elsevier.

R Core Team (2023). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/

Reyes-Bonilla, H., & Calderón-Aguilera, L. E. (1999). Population density, distribution and consumption rates of three corallivores at Cabo Pulmo reef, Gulf of California. Marine Ecology, 20, 347–357. https://doi.org/10.1046/j.1439-0485.1999.2034080.x

Scoffin, T. P., Stearn, C. W., Boucher, D., Frydl, P., Hawkins, C. M., Hunter, J. G., & MacGeachy, J. K. (1980). Calcium carbonate budget of fringing reef of the West coast of Barbados. Part II. Erosion, sediments and internal structure. Bulletin of Marine Sciences, 30, 475–508

Tribollet, A., & Golubic, S. (2011). Reef Bioerosion: Agents and Processes. In Z. Dubinsky, & N. Stambler (Eds.), Coral Reefs: An Ecosystem in Transition (pp. 435–449). Springer.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.