Abstract
Introduction: Orey swamp forests (Campnosperma panamense) are found on the Caribbean coast of Central America, from Nicaragua to Panama, and in the Pacific of Colombia to Northern Ecuador. In Panama, orey grows in monospecific stands or is the dominant species in inundated mixed forests, mainly along the coasts of Bocas del Toro province and Comarca Ngäbe-Buglé. The species was known to occur in Darien province, in the Pacific, although almost no information on its distribution and forest extension in the region existed. Objective: To describe the structure and floristics of orey forests in Darien, map their extension, and propose a model for their regeneration strategy. Methods: This work is part of a vegetation mapping project of the Matusagaratí complex of wetlands. It includes the use of drones, ground truthing, vegetation sampling through temporary plots, and general plant collecting. A supervised classification of a Landsat satellite image was performed to delimit the orey forest extension. To study the orey forest regeneration strategy, a digitalization of forest gaps in high resolution WorldView-2 and Planet Scope images over years was performed. Gap frequency and turnover time for forest stands were calculated. Results: Several monospecific orey mature forest patches were found in remote areas of the Matusagaratí complex of wetlands, for a total of 1 267 hectares. A description of the floristics and structure of orey forests in Darien is presented. A conceptual model of orey mature forest development and gap regeneration is proposed. Conclusions: Our knowledge of the floristic composition, structure and distribution of orey forests in the Republic of Panama has increased. For the first time, a model about their regeneration strategy is proposed. These forests seem to be evolving to different formations. Finally, some hypotheses are proposed about how they might respond to changing environmental conditions.
References
Aguirre, J., & Rangel-Ch, J. O. (2005). Species diversity and richness of the mosses of the colombian Chocó region. Journal Hattori Botanical Laboratory, 97, 97–16.
Alvarez-Dávila, E., Jaramillo-Giraldo, G. C., Cogollo-Rivera, C. C., Martínez-Higuera, H., Rojas, E., & Fernández-Méndez, F. (2016). Structure and diversity of the three plant associations in the San Juan River delta, Chocó, Colombia. Revista Árvore, 40(5), 833–843. http://dx.doi.org/10.1590/0100-67622016000500007
Becek, K., Yong, G. Y. V., Sukri, R. S. & Lai, D. T. C. (2022). Shorea albida Sym. does not regenerate in the Badas peat swamp forest, Brunei Darussalam-An assessment using remote sensing technology. Forest Ecology and Management, 504, 119816.
https://doi.org/10.1016/j.foreco.2021.119816
Bermadzki, E., Bolibok, L., Brzeziecki, B., Zajaczkowski, J., & Zybura, H. (1998). Compositional dynamics of natural forests in the Bialowieza National Park, northeastern. Journal of Vegetation Science, 9, 229–238.
Candanedo, I. (2021). Matusagaratí: el Pantanal de Panamá. Resumen para tomadores de decisión. Universidad Tecnológica de Panamá. Universidad Tecnológica de Panamá. Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT).
Carol, E., Alvarez, M. P., Arcia, M., & Candanedo, I. (2024). Surface and groundwater flow exchanges and lateral hydrological connectivity in environments of the Matusagaratí Wetland, Panama. Science of the Total Environment, 927, 172293. https://doi.org/ 10.1016/j.scitotenv.2024.172293
Carol, E., Alvarez, M. P., Candanedo, I., Saavedra, S., Arcia, M., & Franco, A. (2020). Surface water-groundwater interactions in the Matusagaratí wetland, Panama. Wetlands, Ecology and Management, 28, 971–982. DOI.org/10.1007/s11273-020-09762-9.
Carol, E., Alvarez, M. P., Candanedo, I., & Arcia, M. (2021). Estudiando el funcionamiento hidrológico del Humedal de Matusagaratí. Universidad Tecnológica de Panamá. Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT).
Carol, E., Alvarez, M. P., Santucci, L., Candanedo, I., & Arcia, M. (2022). Origin and dynamics of surface water – groundwater flows that sustain the Matusagaratí Wetland, Panamá. Aquatic Sciences, 84, 16.
Carrasquilla, L. G. (2005). Árboles y arbustos de Panamá. Editora Novo Art.
Centro de Estudios y Acción Social Panameño. (2015). Documento Final del Informe Técnico del Diagnóstico Ambiental de la Laguna de Matusagaratí, provincia de Darién, Panamá [Informe técnico]. Centro de Estudios y Acción Social Panameño.
Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265–270.
Chao, A., Ma, K. H., Hsieh, T. C., & Chiu, C. H. (2015). Online Program SpadeR (Species-richness Prediction And Diversity Estimation in R). Anne Chao's Website. https://sites.google.com/view/chao-lab-website/software/spade
Chao, A., Ma, K. H., & Hsieh, T. C. (2016). iNEXT (iNterpolation and EXTrapolation) Online. Program and User's Guide. Anne Chao's Website http://chao.stat.nthu.edu.tw/wordpress/software_download/
Centro Regional Ramsar para la Capacitación e Investigación sobre Humedales para el Hemisferio Occidental. (2010). Inventario de los humedales continentales y costeros de la República de Panamá. Centro Regional Ramsar para la Capacitación e Investigación sobre Humedales para el Hemisferio Occidental, Editora Novo Art.
Colwell, R. K. (2009). EstimateS 8.2. 0-Statistical estimation of species richness and shared species from samples. User’s Guide and Application. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs.
Dallmeier, F., Kabel, M., & Rice, R. (1992). Methods for long-term biodiversity inventory plots in protected tropical forests. In F. Dallmeier (Ed.), Long-term monitoring of biological diversity in tropical forest areas: Methods for establishment and inventory of permanent plots (pp. 14–16). UNESCO.
Del Valle, J. I. (1996). Los bosques de guandal del delta del río Patía (Colombia). Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, XX(78), 475–488.
Del Valle, J. I. (2000). Consideraciones estructurales de los bosques de guandal del Pacífico sur colombiano. Revista Facultad Nacional de Agronomía Medellín, 53(2), 1011–1042.
Duke, N. C. (2001). Gap creation and regenerative processes driving diversity and structure of mangrove ecosystems. Wetlands Ecology and Management, 9, 257–269.
Ellison, A. M. (2004). Wetlands of Central America. Wetlands Ecology and Management, 12, 3–55.
Flores, R., Ibáñez, A., & Santiago, T. (2021). Las plantas. Kri angwane kri mu. In A. Ibáñez (Ed.), Isla Escudo de Veraguas: estudiando juntos su Biodiversidad. Ngutduä mrende kä Degäbotdä: jatötdigatda gwaire jodron nire bätägä ngwarbe botdä (pp. 114–159). Centro Regional Ramsar para el Hemisferio Occidental (CREHO), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT).
Grauel, W. T. (2004). Ecology and management of wetland forests dominated by Prioria copaifera in Darien, Panama [Unpublish Doctoral dissertation]. University of Florida.
Hammel, B. E., Grayum, M. H., Herrera, C., & Zamora, N. (Eds.). (2004). Manual de plantas de Costa Rica. Volumen I. Introducción. Missouri Botanical Garden, INBio, Museo Nacional de Costa Rica.
Harper, M. A. (2012). The use of binomial Latin-based names in botany. Wellington Botanical Society Bulletin, 54, 3–8.
Hoyos-Santillan, J. (2014). Controls of carbon turnover in lowland tropical peatlands [Unpublished Doctoral dissertation]. University of Nottingham.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., López, O. R., & Sjögersten, S. (2015). Getting to the root of the problem: Litter decomposition and peat formation in lowland Neotropical peatlands. Biogeochemistry, 126, 115–129.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A., López, O. R., & Sjögersten, S. (2016). Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology & Biochemistry, 103, 86–96.
Ibáñez, A., & Flores, R. (2020). Phyllanthus fluitans (Phyllanthaceae): A new record of an aquatic plant for the flora of Panama. Acta Botanica Mexicana, 128, e1767. https://doi.org/10.21829/abm128.2021.1767
Lamb, F. B. (1959). The coastal swamp forests of Nariño, Colombia. Caribbean Forester, 20(3), 78–89.
Lawson, I. T., Kelly, T., Aplin, P., Boom, A., Dargie, G., Draper, F. C. H., Hassan, P. N. Z. B. P., Hoyos-Santillan, J., Kaduk, J., Large, D., Murphy, W., Page, S. E., Roucoux, K. H., Sjögersten, S., Tansey, K., Waldram, M., Wedeux, B. M. M., & Wheeler, J. (2014). Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetlands Ecology and Management, 23(3), 327–346. https://doi.org/10.1007/s11273-014-9402-2
López, O. R., & Kursar, T. A. (2003). Does flood tolerance explain tree species distribution in tropical seasonally flooded hábitats? Oecologia, 136, 193–204.
López, O. R., & Kursar, T. A. (2007). Interannual variation in rainfall, drought stress and seedling mortality may mediate monodominance in tropical flooded forests. Ecophysiology, 154, 35–43.
Manara, B. (1991). Some guidelines on the use of gender in generic names and species epithets. Taxon, 40(2), 301–308.
Phillips, S., Rouse, G. E., & Bustin, R. M. (1997). Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 301–338.
Planet Labs. (2023). Planet Labs Basemap Viewer. https://www.planet.com/explorer/
Plants of the World Online. (2024). Plants of the World Online. Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/
Pyke, C. R., Condit, R., Aguilar, S., & Lao, S. (2001). Floristic composition across a climatic gradient in a Neotropical lowland forest. Journal of Vegetation Science, 12(4), 553–566.
Richards, P. W. (1952). The Tropical Rain Forest: An Ecological Study. Cambridge University Press.
Sjögersten, S., Cheesman, A. W., López, O. R., & Turner, B. L. (2011). Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry, 104, 147–163. https://doi.org/10.1007/s10533-010-9493-7
Sjögersten, S., Siegenthaler, A., López, O. R., Aplin, P., Turner, B., & Gauci, V. (2020). Methane emissions from tree stems in neotropical peatlands. New Phytologist, 225, 769–781.
Stanley, P. C. (1920). A new species of Campnosperma from Panama. Journal of the Arnold Arboretum, 2(2), 111–112.
Stern, W. T. (1966). Botanical Latin: History, Grammar, Syntax, Terminology and Vocabulary. Thomas Nelson and Sons.
TROPICOS. (2024). Tropicos.org. Missouri Botanical Garden. https://www.tropicos.org/
Troxler, T. G., Ikenaga, M., Scinto, L., Boyer, J. N., Condit, R., Perez, R., Gann, G. D., & Childers, D. L. (2012). Patterns of soil bacteria and canopy community structure related to tropical peatland development. Wetlands, 32, 769–782.
Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J., & Smith, G. F. (Eds.). (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159, Glashütten: Koeltz Botanical Books. https://doi.org/10.12705/Code.2018
Urquhart, G. R. (1999). Long-term persistence of Rhaphia taedigera Mart. Swamps in Nicaragua. Biotropica, 31(4), 565–569.
Webb, E. L., & Peralta, R. (1998). Tree community diversity of lowland swamp forest in Northeast Costa Rica, and changes associated with controlled selective logging. Biodiversity and Conservation, 7, 565–583.
Weniger, B., Vonthron-Sénécheau, C., Arango, G. J., Kaiser, M., Brun, R., & Anton, R. (2004). A bioactive biflavonoid from Campnosperma panamense. Fitoterapia, 75, 764–767.
Whitmore, T. C. (1975). Tropical rain forests of the Far East. Oxford: Clarendon Press.
Whitmore, T. C. (1989). Canopy gaps and the two major groups of forest trees. Ecology, 70, 536–538.
##plugins.facebook.comentarios##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Revista de Biología Tropical