Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Temporal dynamics of bacterial populations in recirculating aquaculture systems for sea urchin production
PDF
HTML
EPUB

Keywords

Arbacia dufresnii; culturable bacteria; recirculating system; bacteriological quality; physicochemical parameters; seawater quality.
Arbacia dufresnii; bacterias cultivables; sistemas de recirculación; calidad bacteriológica; parámetros fisicoquímicos; calidad de agua de mar.

How to Cite

Garcés, M., Rubilar, T., Cledon, M., & Sequeiros, C. (2024). Temporal dynamics of bacterial populations in recirculating aquaculture systems for sea urchin production. Revista De Biología Tropical, 72(S1), e58882. https://doi.org/10.15517/rev.biol.trop.v72iS1.58882

Abstract

Introduction: Sea urchin aquaculture is a rising industry, and in consequence, there is a need to establish optimal culture parameters to ensure the health of the cultured animals.

Objective: To evaluate the bacterial counts in the seawater of sea urchin (Arbacia dufresnii) aquaculture recirculating systems (RAS).

Methods: The bacteriological water quality of two RAS containing sea urchins was determined. For approximately two months, weekly water samples were taken. The bacteriological quality was determined by counting total aerobic heterotrophic populations, lactic acid bacteria, enterobacterias and genus Vibrio. Physicochemical parameters were also measured.

Results: There was no presence of disease or mortality. Enterobacteria and lactic acid bacteria were not detected from both RAS systems. The number of animals had an important effect on the observed difference in the count of total bacteria and Vibrio spp. In RAS 1 the maximum counts of total bacteria and Vibrio spp. were 2.8 x 105 ± 1.7 x 105 and 1.45 x 105 ± 3.6 x 104 UFC ml-1, respectively. In RAS 2 total bacteria and Vibrio spp. exhibited repetitive behavior over time influenced in part by water exchange and mainly by feeding. The results indicate that periodic water changes ensure a limited growth of bacterial strains as Vibrio and other bacteria.

Conclusions: Our results suggests that the bacterial count levels recorded in this study can be used as a threshold or safety limit for Arbacia dufresnii aquaculture.

https://doi.org/10.15517/rev.biol.trop..v72iS1.58882
PDF
HTML
EPUB

References

Alfiansah, Y. R., Hassenrück, C., Kunzmann, A., Taslihan, A., Harder, J., & Gärdes, A. (2018). Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Frontiers in Microbiology, 9, 2457. https://doi.org/10.3389/fmicb.2018.02457

Almeida, D. B., Magalhães, C., Sousa, Z., Borges, M. T., Silva, E., Blanquet, I., & Mucha, A. P. (2021). Microbial community dynamics in a hatchery recirculating aquaculture system (RAS) of sole (Solea senegalensis). Aquaculture, 539, 736592. https://doi.org/10.1016/j.aquaculture.2021.736592

Aly, S. M., & Albutti, A. (2014). Antimicrobials used in aquaculture and their public health impact. Journal of Aquaculture Research & Development, 5(4), 1. https://doi.org/10.4172/2155-9546.1000247

Austin, B., & Zhang, X. H. (2006). Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43(2), 119–124. https://doi.org/10.1111/j.1472-765X.2006.01989.x

Arunkumar, M., Lewis-Oscar, F., Thajuddin, N., Pugazhendhi, A., & Nithya, C. (2020). In vitro and in vivo biofilm forming Vibrio spp: a significant threat in aquaculture. Process Biochemistry, 94, 213–223. https://doi.org/10.1016/j.procbio.2020.04.029

Basuyaux, O, & Mathieu, M. (1999). Inorganic nitrogen and its effect on growth of the abalone Haliotis tuberculata Linneaus and the sea urchin Paracentrotus lividus Lamarck. Aquaculture International, 174(1–2), 95–107. https://doi.org/10.1016/S0044-8486(98)00510-9

Blancheton, J. P., Attramadal, K. J. K., Michaud, L., d’Orbcastel, E. R., & Vadstein, O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aquacultural Engineering, 53, 30–39. https://doi.org/10.1016/j.aquaeng.2012.11.009

Cardona, E., Gueguen, Y., Magré, K., Lorgeoux, B., Piquemal, D., Pierrat, F., Noguier, F., & Saulnier, D. (2016). Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiology, 16, 157. https://doi.org/10.1186/s12866-016-0770-z

Chen, J., Sun, R., Pan, C., Sun, Y., Mai, B., & Li, Q. X. (2020). Antibiotics and food safety in aquaculture. Journal of Agricultural and Food Chemistry, 68(43), 11908–11919. https://doi.org/10.1021/acs.jafc.0c03996

Crespi-Abril, A. C., & Rubilar, T. (2023). Ethical Considerations for Echinoderms: New Initiatives in Welfare. Preprints. https://doi.org/10.20944/preprints202310.0447.v1

Culot, A., Grosset, N., Bruey, Q., Auzou, M., Giard, J. C., Favard, B., Wakatsuki, A., Baron, S., Frouel, S., Techer, C. & Gautier, M. (2021). Isolation of Harveyi clade Vibrio spp. collected in aquaculture farms: How can the identification issue be addressed? Journal of Microbiological Methods, 180, 106106. https://doi.org/10.1016/j.mimet.2020.106106

Dahle, S. W., Gaarden, S. I., Buhaug, J. F., Netzer, R., Attramadal, K. J., Busche, T., Aas, M., Ribicic, D. & Bakke, I. (2023). Long-term microbial community structures and dynamics in a commercial RAS during seven production batches of Atlantic salmon fry (Salmo salar). Aquaculture, 565, 739155. https://doi.org/10.1016/j.aquaculture.2022.739155

Dang, H., Song, L., Chen, M., & Chang, Y. (2006). Concurrence of cat and tet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. Microbial Ecology, 52, 634–643. https://doi.org/10.1007/s00248-006-9091-3

Dang, H., Zhang, X., Song, L., Chang, Y., & Yang, G. (2006). Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes from mariculture waters of China. Marine Pollution Bulletin, 52(11), 1494–1503. https://doi.org/10.1016/j.marpolbul.2006.05.011

de Bruijn, I., Liu, Y., Wiegertjes, G. F., & Raaijmakers, J. M. (2018). Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiology Ecology, 94(1), fix161. https://doi.org/10.1093/femsec/fix161

Eck, M., Sare, A. R., Massart, S., Schmautz, Z., Junge, R., Smits, T. H., & Jijakli, M. H. (2019). Exploring bacterial communities in aquaponic systems. Water, 11(2), 260. https://doi.org/10.3390/w11020260

Elston, R. A., Hasegawa, H., Humphrey, K. L., Polyak, I. K., & Häse, C. C. (2008). Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Diseases of aquatic organisms, 82(2), 119–134. https://doi.org/10.3354/dao01982

García-Mendoza, M. E., Cáceres-Martínez, J., Vásquez-Yeomans, R., & Cruz-Flores, R. (2019). Bacteriological water quality of recirculating aquatic systems for maintenance of yellowtail amberjack Seriola lalandi. Journal of the World Aquaculture Society, 50(5), 934–953. https://doi.org/10.1111/jwas.12620

Grimes, D. J. (2020). The vibrios: scavengers, symbionts, and pathogens from the sea. Microbial Ecology, 80(3), 501–506. https://doi.org/10.1007/s00248-020-01524-7

Haditomo, A. H. C., Yonezawa, M., Yu, J., Mino, S., Sakai, Y., & Sawabe, T. (2021). The structure and function of gut microbiomes of two species of sea urchins, Mesocentrotus nudus and Strongylocentrotus intermedius, in Japan. Frontiers in Marine Science, 8, 1895. https://doi.org/10.3389/fmars.2021.802754

Hakim, J. A., Koo, H., Dennis, L. N., Kumar, R., Ptacek, T., Morrow, C. D., Lefkowitz, E. J., Powell, M. L., Bej, A. K., & Watts, S. A. (2015). An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus. Frontiers in Microbiology, 6, 1047. https://doi.org/10.3389/fmicb.2015.01047

Heenatigala, P. P. M., & Fernando, M. U. L. (2016). Occurrence of bacteria species responsible for vibriosis in shrimp pond culture systems in Sri Lanka and assessment of the suitable control measures. Sri Lanka Journal of Aquatic Sciences, 21(1), 1–17. https://doi.org/10.4038/sljas.v21i1.7481

Hovanec, T. A., & DeLong, E. F. (1996). Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Applied and Environmental Microbiology, 62(8), 2888–2896. https://doi.org/10.1128/aem.62.8.2888-2896.1996

Hurvich, C. M., Simonoff, J. S., & Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2), 271–293. https://doi.org/10.1111/1467-9868.00125

Joshi, J., Srisala, J., Truong, V. H., Chen, I. T., Nuangsaeng, B., Suthienkul, O., Lo, C. H., Flegel, T. W., Sritunyalucksana, K., & Thitamadee, S. (2014). Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture, 428, 297–302. https://doi.org/10.1016/j.aquaculture.2014.03.030

Laport, M. S., Bauwens, M., Collard, M., & George, I. (2018). Phylogeny and antagonistic activities of culturable bacteria associated with the gut microbiota of the sea urchin (Paracentrotus lividus). Current Microbiology, 75, 359–367. https://doi.org/10.1007/s00284-017-1389-5

Lawrence, J. M., McBride, S. C., Plank, L. R., & Shpigel, M. (2003). Ammonia tolerance of the sea urchins Lytechinus variegatus, Arbacia punctulata, Strongylocentrotus franciscanus, and Paracentrotus lividus. In J. P. Féral, & B. David (Eds.), Echinoderm Research 2001 (pp. 233–236). A.A. Balkema.

Leonard, N., Guiraud, J. P., Gasset, E., Cailleres, J. P., & Blancheton, J. P. (2002). Bacteria and nutrients—nitrogen and carbon—in a recirculating system for sea bass production. Aquacultural Engineering, 26(2), 111–127. https://doi.org/10.1016/S0144-8609(02)00008-0

Norusis, M. J. (1997) SPSS advanced statistics 7.5 [Computer software]. SPSS.

Prado, P., Carrasco, N., Catanese, G., Grau, A., Cabanes, P., Carella, F., García-March, J. R., Tena, J., Roque, A., Bertomeu, E., Gras, N., Caiola, N., Furones, M. D., & Andree, K. B. (2020). Presence of Vibrio mediterranei associated to major mortality in stabled individuals of Pinna nobilis L. Aquaculture, 519, 734899. https://doi.org/10.1016/j.aquaculture.2019.734899

Purgar, M., Kapetanović, D., Geček, S., Marn, N., Haberle, I., Hackenberger, B. K., Gavrilovic, A., Pečar Ilić, J., Hackenberger, D. K., Djerd, T., Caleta, B., & Klanjscek, T. (2022). Investigating the Ability of Growth Models to Predict In Situ Vibrio spp. Abundances. Microorganisms, 10(9), 1765. https://doi.org/10.3390/microorganisms10091765

Qin, Y., Hou, J., Deng, M., Liu, Q., Wu, C., Ji, Y., & He, X. (2016). Bacteria abundance and diversity in pond water supplied with different feeds. Scientific Reports, 6(35232), 1–13. https://doi.org/10.1038/srep35232

R Core Team (2021). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html

Rajeev, R., Adithya, K. K., Kiran, G. S., & Selvin, J. (2021). Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Reviews in Aquaculture, 13(1), 238–258. https://doi.org/10.1111/raq.12471

Rubilar, T., Epherra, L., Deias-Spreng, J., De Vivar, M. E. D., Avaro, M., Lawrence, A. L., & Lawrence, J. M. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4), 1083–1093. https://doi.org/10.2983/035.035.0431

Rubilar, T., & Crespi-Abril, A. (2017). Does echinoderm research deserve an ethical consideration? Revista de Biología Tropical, 65(S1), S11–S22. https://doi.org/10.15517/rbt.v65i1-1.31662

Rubilar, T., & Cardozo, D. (2021). Blue Growth: Sea Urchin Sustainable Aquaculture, Innovative Approaches. Revista de Biología Tropical, 69(S1), 474–486. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46388

Rurangwa, E., & Verdegem, M. C. (2015). Microorganisms in recirculating aquaculture systems and their management. Reviews in Aquaculture, 7(2), 117–130. https://doi.org/10.1111/raq.12057

Sampaio, A., Silva, V., Poeta, P., & Aonofriesei, F. (2022). Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14(2), 97. https://doi.org/10.3390/d14020097

Sharrer, M. J., Summerfelt, S. T., Bullock, G. L., Gleason, L. E., & Taeuber, J. (2005). Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquacultural Engineering 33, 135–149. https://doi.org/10.1016/j.aquaeng.2004.12.001

Siikavuopio, S. I., Dale, T., Foss, A., & Mortensen, A. (2004). Effects of chronic ammonia exposure on gonad growth and survival in green sea urchin Strongylocentrotus droebachiensis. Aquaculture, 242(1–4), 313–320. https://doi.org/10.1016/j.aquaculture.2004.08.042

Thompson, F. L., Iida, T., & Swings, J. (2004). Biodiversity of vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431. https://doi.org/10.1128/mmbr.68.3.403-431.2004

Vasile, M. A., Metaxa, I., Plăcintă, S., Mogodan, A., Petrea, Ş. M., & Platon, C. (2017). Preliminary study on bacteriological and physicochemical water profile of cyprinid fish ponds. Aquaculture, Aquarium, Conservation & Legislation, 10(1), 103–112.

Vignesh, R., Karthikeyan, B. S., Periyasamy, N., & Devanathan, K. (2011). Antibiotics in aquaculture: an overview. South Asian Journal of Experimental Biology, 1(3), 114–120. https://doi.org/10.38150/sajeb.1(3).p114-120

Wai, S. N., Mizunoe, Y., & Yoshida, S. I. (1999). How Vibrio cholerae survive during starvation. FEMS Microbiology Letters, 180(2), 123–131. https://doi.org/10.1111/j.1574-6968.1999.tb08786.x

Wang, Y. N., Chang, Y. Q., & Lawrence, J. M. (2013). Disease in sea urchins. In J. M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 179–186). Elsevier. https://doi.org/10.1016/B978-0-12-396491-5.00012-5

Watts, J. E., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.