Abstract
Introduction: Sea urchin aquaculture is a rising industry, and in consequence, there is a need to establish optimal culture parameters to ensure the health of the cultured animals.
Objective: To evaluate the bacterial counts in the seawater of sea urchin (Arbacia dufresnii) aquaculture recirculating systems (RAS).
Methods: The bacteriological water quality of two RAS containing sea urchins was determined. For approximately two months, weekly water samples were taken. The bacteriological quality was determined by counting total aerobic heterotrophic populations, lactic acid bacteria, enterobacterias and genus Vibrio. Physicochemical parameters were also measured.
Results: There was no presence of disease or mortality. Enterobacteria and lactic acid bacteria were not detected from both RAS systems. The number of animals had an important effect on the observed difference in the count of total bacteria and Vibrio spp. In RAS 1 the maximum counts of total bacteria and Vibrio spp. were 2.8 x 105 ± 1.7 x 105 and 1.45 x 105 ± 3.6 x 104 UFC ml-1, respectively. In RAS 2 total bacteria and Vibrio spp. exhibited repetitive behavior over time influenced in part by water exchange and mainly by feeding. The results indicate that periodic water changes ensure a limited growth of bacterial strains as Vibrio and other bacteria.
Conclusions: Our results suggests that the bacterial count levels recorded in this study can be used as a threshold or safety limit for Arbacia dufresnii aquaculture.
References
Alfiansah, Y. R., Hassenrück, C., Kunzmann, A., Taslihan, A., Harder, J., & Gärdes, A. (2018). Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Frontiers in Microbiology, 9, 2457. https://doi.org/10.3389/fmicb.2018.02457
Almeida, D. B., Magalhães, C., Sousa, Z., Borges, M. T., Silva, E., Blanquet, I., & Mucha, A. P. (2021). Microbial community dynamics in a hatchery recirculating aquaculture system (RAS) of sole (Solea senegalensis). Aquaculture, 539, 736592. https://doi.org/10.1016/j.aquaculture.2021.736592
Aly, S. M., & Albutti, A. (2014). Antimicrobials used in aquaculture and their public health impact. Journal of Aquaculture Research & Development, 5(4), 1. https://doi.org/10.4172/2155-9546.1000247
Austin, B., & Zhang, X. H. (2006). Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43(2), 119–124. https://doi.org/10.1111/j.1472-765X.2006.01989.x
Arunkumar, M., Lewis-Oscar, F., Thajuddin, N., Pugazhendhi, A., & Nithya, C. (2020). In vitro and in vivo biofilm forming Vibrio spp: a significant threat in aquaculture. Process Biochemistry, 94, 213–223. https://doi.org/10.1016/j.procbio.2020.04.029
Basuyaux, O, & Mathieu, M. (1999). Inorganic nitrogen and its effect on growth of the abalone Haliotis tuberculata Linneaus and the sea urchin Paracentrotus lividus Lamarck. Aquaculture International, 174(1–2), 95–107. https://doi.org/10.1016/S0044-8486(98)00510-9
Blancheton, J. P., Attramadal, K. J. K., Michaud, L., d’Orbcastel, E. R., & Vadstein, O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aquacultural Engineering, 53, 30–39. https://doi.org/10.1016/j.aquaeng.2012.11.009
Cardona, E., Gueguen, Y., Magré, K., Lorgeoux, B., Piquemal, D., Pierrat, F., Noguier, F., & Saulnier, D. (2016). Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiology, 16, 157. https://doi.org/10.1186/s12866-016-0770-z
Chen, J., Sun, R., Pan, C., Sun, Y., Mai, B., & Li, Q. X. (2020). Antibiotics and food safety in aquaculture. Journal of Agricultural and Food Chemistry, 68(43), 11908–11919. https://doi.org/10.1021/acs.jafc.0c03996
Crespi-Abril, A. C., & Rubilar, T. (2023). Ethical Considerations for Echinoderms: New Initiatives in Welfare. Preprints. https://doi.org/10.20944/preprints202310.0447.v1
Culot, A., Grosset, N., Bruey, Q., Auzou, M., Giard, J. C., Favard, B., Wakatsuki, A., Baron, S., Frouel, S., Techer, C. & Gautier, M. (2021). Isolation of Harveyi clade Vibrio spp. collected in aquaculture farms: How can the identification issue be addressed? Journal of Microbiological Methods, 180, 106106. https://doi.org/10.1016/j.mimet.2020.106106
Dahle, S. W., Gaarden, S. I., Buhaug, J. F., Netzer, R., Attramadal, K. J., Busche, T., Aas, M., Ribicic, D. & Bakke, I. (2023). Long-term microbial community structures and dynamics in a commercial RAS during seven production batches of Atlantic salmon fry (Salmo salar). Aquaculture, 565, 739155. https://doi.org/10.1016/j.aquaculture.2022.739155
Dang, H., Song, L., Chen, M., & Chang, Y. (2006). Concurrence of cat and tet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. Microbial Ecology, 52, 634–643. https://doi.org/10.1007/s00248-006-9091-3
Dang, H., Zhang, X., Song, L., Chang, Y., & Yang, G. (2006). Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes from mariculture waters of China. Marine Pollution Bulletin, 52(11), 1494–1503. https://doi.org/10.1016/j.marpolbul.2006.05.011
de Bruijn, I., Liu, Y., Wiegertjes, G. F., & Raaijmakers, J. M. (2018). Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiology Ecology, 94(1), fix161. https://doi.org/10.1093/femsec/fix161
Eck, M., Sare, A. R., Massart, S., Schmautz, Z., Junge, R., Smits, T. H., & Jijakli, M. H. (2019). Exploring bacterial communities in aquaponic systems. Water, 11(2), 260. https://doi.org/10.3390/w11020260
Elston, R. A., Hasegawa, H., Humphrey, K. L., Polyak, I. K., & Häse, C. C. (2008). Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Diseases of aquatic organisms, 82(2), 119–134. https://doi.org/10.3354/dao01982
García-Mendoza, M. E., Cáceres-Martínez, J., Vásquez-Yeomans, R., & Cruz-Flores, R. (2019). Bacteriological water quality of recirculating aquatic systems for maintenance of yellowtail amberjack Seriola lalandi. Journal of the World Aquaculture Society, 50(5), 934–953. https://doi.org/10.1111/jwas.12620
Grimes, D. J. (2020). The vibrios: scavengers, symbionts, and pathogens from the sea. Microbial Ecology, 80(3), 501–506. https://doi.org/10.1007/s00248-020-01524-7
Haditomo, A. H. C., Yonezawa, M., Yu, J., Mino, S., Sakai, Y., & Sawabe, T. (2021). The structure and function of gut microbiomes of two species of sea urchins, Mesocentrotus nudus and Strongylocentrotus intermedius, in Japan. Frontiers in Marine Science, 8, 1895. https://doi.org/10.3389/fmars.2021.802754
Hakim, J. A., Koo, H., Dennis, L. N., Kumar, R., Ptacek, T., Morrow, C. D., Lefkowitz, E. J., Powell, M. L., Bej, A. K., & Watts, S. A. (2015). An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus. Frontiers in Microbiology, 6, 1047. https://doi.org/10.3389/fmicb.2015.01047
Heenatigala, P. P. M., & Fernando, M. U. L. (2016). Occurrence of bacteria species responsible for vibriosis in shrimp pond culture systems in Sri Lanka and assessment of the suitable control measures. Sri Lanka Journal of Aquatic Sciences, 21(1), 1–17. https://doi.org/10.4038/sljas.v21i1.7481
Hovanec, T. A., & DeLong, E. F. (1996). Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Applied and Environmental Microbiology, 62(8), 2888–2896. https://doi.org/10.1128/aem.62.8.2888-2896.1996
Hurvich, C. M., Simonoff, J. S., & Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2), 271–293. https://doi.org/10.1111/1467-9868.00125
Joshi, J., Srisala, J., Truong, V. H., Chen, I. T., Nuangsaeng, B., Suthienkul, O., Lo, C. H., Flegel, T. W., Sritunyalucksana, K., & Thitamadee, S. (2014). Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture, 428, 297–302. https://doi.org/10.1016/j.aquaculture.2014.03.030
Laport, M. S., Bauwens, M., Collard, M., & George, I. (2018). Phylogeny and antagonistic activities of culturable bacteria associated with the gut microbiota of the sea urchin (Paracentrotus lividus). Current Microbiology, 75, 359–367. https://doi.org/10.1007/s00284-017-1389-5
Lawrence, J. M., McBride, S. C., Plank, L. R., & Shpigel, M. (2003). Ammonia tolerance of the sea urchins Lytechinus variegatus, Arbacia punctulata, Strongylocentrotus franciscanus, and Paracentrotus lividus. In J. P. Féral, & B. David (Eds.), Echinoderm Research 2001 (pp. 233–236). A.A. Balkema.
Leonard, N., Guiraud, J. P., Gasset, E., Cailleres, J. P., & Blancheton, J. P. (2002). Bacteria and nutrients—nitrogen and carbon—in a recirculating system for sea bass production. Aquacultural Engineering, 26(2), 111–127. https://doi.org/10.1016/S0144-8609(02)00008-0
Norusis, M. J. (1997) SPSS advanced statistics 7.5 [Computer software]. SPSS.
Prado, P., Carrasco, N., Catanese, G., Grau, A., Cabanes, P., Carella, F., García-March, J. R., Tena, J., Roque, A., Bertomeu, E., Gras, N., Caiola, N., Furones, M. D., & Andree, K. B. (2020). Presence of Vibrio mediterranei associated to major mortality in stabled individuals of Pinna nobilis L. Aquaculture, 519, 734899. https://doi.org/10.1016/j.aquaculture.2019.734899
Purgar, M., Kapetanović, D., Geček, S., Marn, N., Haberle, I., Hackenberger, B. K., Gavrilovic, A., Pečar Ilić, J., Hackenberger, D. K., Djerd, T., Caleta, B., & Klanjscek, T. (2022). Investigating the Ability of Growth Models to Predict In Situ Vibrio spp. Abundances. Microorganisms, 10(9), 1765. https://doi.org/10.3390/microorganisms10091765
Qin, Y., Hou, J., Deng, M., Liu, Q., Wu, C., Ji, Y., & He, X. (2016). Bacteria abundance and diversity in pond water supplied with different feeds. Scientific Reports, 6(35232), 1–13. https://doi.org/10.1038/srep35232
R Core Team (2021). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html
Rajeev, R., Adithya, K. K., Kiran, G. S., & Selvin, J. (2021). Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Reviews in Aquaculture, 13(1), 238–258. https://doi.org/10.1111/raq.12471
Rubilar, T., Epherra, L., Deias-Spreng, J., De Vivar, M. E. D., Avaro, M., Lawrence, A. L., & Lawrence, J. M. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4), 1083–1093. https://doi.org/10.2983/035.035.0431
Rubilar, T., & Crespi-Abril, A. (2017). Does echinoderm research deserve an ethical consideration? Revista de Biología Tropical, 65(S1), S11–S22. https://doi.org/10.15517/rbt.v65i1-1.31662
Rubilar, T., & Cardozo, D. (2021). Blue Growth: Sea Urchin Sustainable Aquaculture, Innovative Approaches. Revista de Biología Tropical, 69(S1), 474–486. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46388
Rurangwa, E., & Verdegem, M. C. (2015). Microorganisms in recirculating aquaculture systems and their management. Reviews in Aquaculture, 7(2), 117–130. https://doi.org/10.1111/raq.12057
Sampaio, A., Silva, V., Poeta, P., & Aonofriesei, F. (2022). Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14(2), 97. https://doi.org/10.3390/d14020097
Sharrer, M. J., Summerfelt, S. T., Bullock, G. L., Gleason, L. E., & Taeuber, J. (2005). Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquacultural Engineering 33, 135–149. https://doi.org/10.1016/j.aquaeng.2004.12.001
Siikavuopio, S. I., Dale, T., Foss, A., & Mortensen, A. (2004). Effects of chronic ammonia exposure on gonad growth and survival in green sea urchin Strongylocentrotus droebachiensis. Aquaculture, 242(1–4), 313–320. https://doi.org/10.1016/j.aquaculture.2004.08.042
Thompson, F. L., Iida, T., & Swings, J. (2004). Biodiversity of vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431. https://doi.org/10.1128/mmbr.68.3.403-431.2004
Vasile, M. A., Metaxa, I., Plăcintă, S., Mogodan, A., Petrea, Ş. M., & Platon, C. (2017). Preliminary study on bacteriological and physicochemical water profile of cyprinid fish ponds. Aquaculture, Aquarium, Conservation & Legislation, 10(1), 103–112.
Vignesh, R., Karthikeyan, B. S., Periyasamy, N., & Devanathan, K. (2011). Antibiotics in aquaculture: an overview. South Asian Journal of Experimental Biology, 1(3), 114–120. https://doi.org/10.38150/sajeb.1(3).p114-120
Wai, S. N., Mizunoe, Y., & Yoshida, S. I. (1999). How Vibrio cholerae survive during starvation. FEMS Microbiology Letters, 180(2), 123–131. https://doi.org/10.1111/j.1574-6968.1999.tb08786.x
Wang, Y. N., Chang, Y. Q., & Lawrence, J. M. (2013). Disease in sea urchins. In J. M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 179–186). Elsevier. https://doi.org/10.1016/B978-0-12-396491-5.00012-5
Watts, J. E., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.