Abstract
Introduction: Care towards nutrition is essential for the quality of a sustainable aquaculture product. Since the balance in food affects the growth and production of gametes. The circular economy is made possible through the use of discarded materials.
Objective: The aim of this research was to study the fatty acid composition and metabolic pathways in the gametes of Arbacia dufresnii, with a focus on the implications of incorporating shrimp byproducts into aquaculture feeds.
Methods: Four different treatments were designed to maintain optimal nutritional quality, particularly in lipids and proteins, based on previous studies. The fatty acid profiles of the feeds and gametes were analyzed by using gas-chromatography, and statistical analyses were conducted to determine significant differences.
Results: Significant differences were observed in the abundance (%) of omega-3 (ω-3) and omega-6 (ω-6) fatty acids. The (ω-3) metabolic pathway was more pronounced in the gametes of wild animals and those fed with the experimental feeds. In contrast, the (ω-6) metabolic pathway was less relevant in these groups. The (ω-3) /(ω-6) ratio was highest in the gametes of wild animals. Feeds enriched in fatty acids enhanced their bioaccumulation in the gametes reaching higher concentrations than wild animals. The availability of fatty acids in foods allowed their bioaccumulation in gametes, with concentrations equal to or higher than those observed in animals in their natural environment for certain fatty acids.
Conclusions: Incorporating shrimp byproducts in aquaculture feeds demonstrated a promising strategy for resource utilization and organic input generation. The fatty acid composition in the gametes of A. dufresnii was influenced by the diet, highlighting the potential of balanced feeds to enhance the bioaccumulation of essential fatty acids. These findings provide valuable insights for the development of sustainable aquaculture practices and the production of nutritionally enriched seafood products.
References
Abuzar, Sharif, H. R., Sharif, M. K., Arshad, R., Rehman, A., Ashraf, W., Karim, A., Awan, K. A., Raza, H., Khalid, W., Asar, T. O., & Al-Sameen, M. A. (2023). Potential industrial and nutritional applications of shrimp by-products: a review. International Journal of Food Properties, 26(2), 3407–3432. https://doi.org/10.1080/10942912.2023.2283378
Bell, J. G., McEvoy, J., Tocher, D. R., McGhee, F., Campbell, P. J., & Sargent, J. R. (2003). Replacement of fish oil with rapeseed oil in diets of atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. Journal of Nutrition, 131(5), 1535–1543. https://doi.org/10.1093/jn/131.5.1535
Bondad-Reantaso, M. G., Subasinghe, R. P., Josupeit, H., Cai, J., & Zhou, X. (2012). The role of crustacean fisheries and aquaculture in global food security: Past, present and future. Journal of Invertebrate Pathology, 110(2), 158–165. https://doi.org/10.1016/j.jip.2012.03.010
Canseco, L. E. F., Lemini, J. L. C., Suárez, A. D. F., Flores, R. R., López, H. R., Galavíz, Á. C., Vázquez Lozada, O., & Alonso, S. D. (2015). Desarrollo de alimentos formulados para especies acuícolas. Revista Mexicana de Agroecosistemas, 2(1), 40–48.
Carboni, S., Hughes, A. D., Atack, T., Tocher, D. R., & Migaud, H. (2013). Fatty acid profiles during gametogenesis in sea urchin (Paracentrotus lividus): Effects of dietary inputs on gonad, egg and embryo profiles. Comparative Biochemistry and Physiology – A Molecular and Integrative Physiology, 164(2), 376–382. https://doi.org/10.1016/j.cbpa.2012.11.010
Christie, W. W. (1998). Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids, 33(4), 343–353. https://doi.org/10.1007/s11745-998-0214-x
Ciriminna, L., Signa, G., Vaccaro, A. M., Visconti, G., Mazzola, A., & Vizzini, S. (2021). Turning waste into gold: Sustainable feed made of discards from the food industries promotes gonad development and colouration in the commercial sea urchin Paracentrotus lividus (Lamarck, 1816). Aquaculture Reports, 21, 100881. https://doi.org/10.1016/j.aqrep.2021.100881
Cretton, M., Malangam, G., Sobczuk, T., & Mazzuca, M. (2020). Lipid fraction from industrial crustacean waste and its potential as a supplement for the feed industry : a case study in Argentine Patagonia. Waste and Biomass Valorization, 12, 2311–2319. https://doi.org/10.1007/s12649-020-01162-7
David, F., Hubas, C., Laguerre, H., Badou, A., Herault, G., Bordelet, T., & Ameziane, N. (2020). Food sources, digestive efficiency and resource allocation in the sea cucumber Holothuria forskali (Echinodermata: Holothuroidea): Insights from pigments and fatty acids. Aquaculture Nutrition, 26(5), 1568–1583. https://doi.org/10.1111/anu.13103
De Carli, P., Braccalenti, J. C., García-De-León, F. J., & Acuña Gómez, E. P. (2012). Argentine shrimp fishery Pleoticus muelleri (Crustacea: Penaeidae) in Patagonia, is it a single stock? Anales Instituto Patagonia (Chile), 40(2), 103–112.
Díaz de Vivar, M. E., Zárate, E. V., Rubilar, T., Epherra, L., Avaro, M. G., & Sewell, M. A. (2019). Lipid and fatty acid profiles of gametes and spawned gonads of Arbacia dufresnii (Echinodermata: Echinoidea): sexual differences in the lipids of nutritive phagocytes. Marine Biology, 166(7), 1–15. https://doi.org/10.1007/s00227-019-3544-y
Espinosa-Chaurand, Luis Daniel, Silva-Loera, Antonio, García-Esquivel, Zaúl, & López-Acuña, Lus Mercedes. (2015). Uso de harina de cabeza de camarón como reemplazo proteico de harina de pescado en dietas balanceadas para juveniles de Totoaba macdonaldi (Gilbert, 1890). Latin American Journal of Aquatic Research, 43(3), 457–465. https://dx.doi.org/10.3856/vol43-issue3-fulltext-7
Espinoza, J. P., Partnership, S. F., & Sonnenholzner, J. (2022). Effects of dry pelleted diets on growth and survival of the edible sea urchin Arbacia stellata (Blainville, 1825) for an echinoculture feasibility. Aquatechnica, 4(3), 173–188. https://doi.org/10.33936/at.v4i3.5373
Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35(2), W606–W612. https://doi.org/10.1093/nar/gkm324
Fernandez, C., & Boudouresque, C. F. (1998). Evaluating artificial diets for small Paracentrotus lividus (Echinodermata: Echinoidea). In R. Mooi, & M. Telford (Eds.), Echinoderms: San Francisco (pp. 651–657). Balkema.
García, I. M. F. J., & Pita, M. (2010). Males and females gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata). Helgoland Marine Research, 64, 135–142. https://doi.org/10.1007/s10152-009-0174-7
González-Zevallos, D. R., Góngora, M. E., & Romero, C. R. (2020). Abordaje socioambiental con énfasis en los residuos sólidos generados por la flota pesquera de Rawson, Patagonia Argentina. Interciencia, 45(3), 142–149.
Guillou, M., Lumingas, L. J. L., & Michel, C. (2000). The effect of feeding or starvation on resource allocation to body components during the reproductive cycle of the sea urchin Sphaerechinus granularis (Lamarck). Journal of Experimental Marine Biology and Ecology, 245(2), 183–196. https://doi.org/10.1016/S0022-0981(99)00162-8
Gunathilaka, B. E., Shin, J., & Shin, J. (2021). Evaluation of shrimp protein hydrolysate and krill meal supplementation in low fish meal diet for red seabream (Pagrus major). Fisheries and Aquatic Sciences, 24(3), 109–120. https://doi.org/10.47853/FAS.2021.e11
Hop, W., Jeckel, A., Elena, J., Moreno, A. D. E., Moreno, V. J., Plata, M., & Horacio, W. (1990). changes in biochemical composition and lipids of the digestive gland in females of the shrimp Pleoticus muelleri (Bate) during the molting cycle. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 96(3), 521–525. https://doi.org/10.1016/0305-0491(90)90050-4
Jobling, M. (2012). National Research Council (NRC): Nutrient requirements of fish and shrimp. Aquaculture International, 20(3), 601–602. https://doi.org/10.1007/s10499-011-9480-6
Kozhina, V. P., Terekhova, T. A., & Svetashev, V. I. (1978). Lipid composition of gametes and embryos of the sea urchin Strongylocentrotus intermedius at early stages of development. Developmental biology, 62(2), 512–517. https://doi.org/10.1016/0012-1606(78)90232-4
Lawrence, J., Lawrence, A., & Watts, S. (2013). Feeding, digestion and digestibility of sea urchins. In J. M. Lawrence (Ed.), Sea Urchins: Biology and Ecology (Vol. 38, pp. 133–154). Elsevier.
Lepage, G., & Roy, C. C. (1986). Direct transesterification of all classes of lipids in a one-step reaction. Journal of Lipid Research, 27(1), 114–120. https://doi.org/10.1016/s0022-2275(20)38861-1
Martínez-Pita, I., García, F. J., & Pita, M. L. (2010). The effect of seasonality on gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata: Echinoidea). Journal of Shellfish Research, 29(2), 517–525. https://doi.org/10.2983/035.029.0231
Moriondo, P., & de la Garza, J. (2020). Pesquería de langostino (Pleoticus muelleri). Resumen de la información biológica–pesquera reportada por los observadores a bordo en aguas de Jurisdicción Nacional. Temporada 2019 [Technical report]. Instituto Nacional de Investigación y Desarrollo Pesquero. https://doi.org/10.13140/RG.2.2.14625.86888
National Research Council. (2011). Nutrient requirements of fish and shrimp. The National Academic Press.
Prato, E., Chiantore, M., Kelly, M. S., Hughes, A. D., James, P., Ferranti, M. P., Biandolino, F., Parlapiano, I., Sicuro, B., & Fanelli, G. (2018). Effect of formulated diets on the proximate composition and fatty acid profiles of sea urchin Paracentrotus lividus gonad. Aquaculture International, 26(1), 185–202. https://doi.org/10.1007/s10499-017-0203-5
Qi, S., Zhao, X., Zhang, W., Wang, C., He, M., & Chang, Y. (2018). The effects of 3 different microalgae species on the growth , metamorphosis and MYP gene expression of two sea urchins, Strongylocentrotus intermedius and S. nudus. Aquaculture, 492, 123–131. https://doi.org/10.1016/j.aquaculture.2018.02.007
Rahman, M. A., Arshad, A., & Yusoff, F. (2014). Sea urchins (Echinodermata: Echinoidea): their biology, culture and bioactive compounds. International Conference on Agricultural, Ecological and Medical Sciences, 1, 39–48. http://dx.doi.org/10.15242/IICBE.C714075
Raposo, A. I. G, Ferreira, S. M. F., Ramos R., Santos, P. M., Anjos, C., Baptista, T., Tecelão, C., Costa, J. L., & Pombo, A. (2019). Effect of three diets on the gametogenic development and fatty acid profile of Paracentrotus lividus (Lamarck, 1816) gonads. Aquaculture Research, 50(8), 2023–2038. https://doi.org/10.1111/are.14051
Rocha, F., Baião, L. F., Moutinho, S., Reis, B., Oliveira, A., Arenas, F., Maia, M. R. G., Fonseca, A. J. M., Pintado, M., & Valente, L. M. P. (2019). The effect of sex, season and gametogenic cycle on gonad yield , biochemical composition and quality traits of Paracentrotus lividus along the North Atlantic coast of Portugal. Scientific Reports, 9, 2994. https://doi.org/10.1038/s41598-019-39912-w
Rubilar, T, & Cardozo, D. (2021). Blue growth: Sea urchin sustainable aquaculture, innovative approaches. Revista de Biología Tropical, 69(S1), S474–S486. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46388
Rubilar, T., & Crespi-Abril, A. (2017). Does echinoderm research deserve an ethical consideration? Revista de Biología Tropical, 65(S1), S11–S12. https://doi.org/10.15517/rbt.v65i1-1.31662
Rubilar, T., Epherra, L., Deias-Spreng, J., Díaz de Vivar, M., Avaro, M., Lawrence, A., & Lawrence, J. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4), 1083–1093. https://doi.org/10.2983/035.035.0431
Sanna, R., Siliani, S., Melis, R., Loi, B., Baroli, M., Uzzau, S., & Anedda, R. (2017). The role of fatty acids and triglycerides in the gonads of Paracentrotus lividus from Sardinia:gGrowth, reproduction and cold acclimatization. Marine Environmental Research, 130, 113–121. https://doi.org/10.1016/j.marenvres.2017.07.003
Sepúlveda, L. R., Fernandez, J. P., Vera-Piombo, M., Chaar, F. B., & Rubilar, T. (2021). Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity. Revista de Biología Tropical, 69(S1), S464–S473. https://doi.org/10.15517/rbt.v69iSuppl.1.46386
Simopoulos, A. P. (2010). The omega-6/omega-3 fatty acid ratio: Health implications. Oleagineux Corps Gras Lipides, 17(5), 267–275. https://doi.org/10.1684/ocl.2010.0325
Spirlet, C., Grosjean, P., & Jangoux, M. (2001). Cultivation of Paracentrotus lividus (Echinodermata: Echinoidea) on extruded feeds: digestive efficiency, somatic and gonadal growth. Aquaculture Nutrition, 7(2), 91–99. https://doi.org/10.1046/j.1365-2095.2001.00155
Sun, J., & Chiang, F. (2015). Use and exploitation of sea urchins. In S. Eddy, & N. Brown (Eds.), Echinoderm Aquaculture (pp. 25–46). Wiley-Blac. https://doi.org/10.1002/9781119005810.ch2
Trenzado, C. E., Hidalgo, F., Villanueva, D., Furné, M., Díaz-Casado, M. E., Merino, R., & Sanz, A. (2012). Study of the enzymatic digestive profile in three species of Mediterranean sea urchins. Aquaculture, 344–349, 174–180. https://doi.org/10.1016/j.aquaculture.2012.03.027
Vizzini, S., Visconti, G., Signa, G., Romano, S., & Mazzola, A. (2019). A new sustainable formulated feed based on discards from food industries for rearing the sea urchin Paracentrotus lividus (Lmk). Aquaculture Nutrition, 25(3), 691–701. https://doi.org/10.1111/anu.12890
Wang, H., Ding, J., Ding, S., & Chang, Y. (2020). Integrated metabolomic and transcriptomic analyses identify critical genes in eicosapentaenoic acid biosynthesis and metabolism in the sea urchin Strongylocentrotus intermedius. Scientific Reports, 10(1), 1697. https://doi.org/10.1038/s41598-020-58643-x
Wilson, R. (2003). Amino acid requirements of finfish and crustaceans. In F. D. Egan (Ed.), Veterinary medicine (Vol. 43, Issue 3, pp. 437–442). CABI Books. https://doi.org/10.1016/s0377-8401(03)00214-1
Zárate, E. V., Díaz De Vivar, M. E., Avaro, M. G., Epherra, L., & Sewell, M. A. (2016). Sex and reproductive cycle affect lipid and fatty acid profiles of gonads of Arbacia dufresnii (Echinodermata: Echinoidea). Marine Ecology Progress Series, 551, 185–199. https://doi.org/10.3354/meps11711
Zhou, D. Y., Qin, L., Zhu, B. W., Wang, X. D., Tan, H., Yang, J. F., Li, D. M., Dong, X. P., Wu, H. T., Sun, L. M., Li, X. L., & Murata, Y. (2011). Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chemistry, 129(4), 1591–1597. https://doi.org/10.1016/j.foodchem.2011.06.01
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.