Abstract
Introduction: The coral reefs of Isla del Coco National Park are some of the most pristine ecosystems on Earth. The sea urchin Diadema mexicanum (Diadematoida: Diadematidae) is a common inhabitant with a pivotal role in the ecology of this unique ecosystem.
Objective: In this study, we identified the predominant predators of D. mexicanum and estimated the predatory consumption rates. We also determined predation rates at different sea urchin sizes and at sites with contrasting refuge availability.
Methods: We use field video recording observations and tethering experiments.
Results: The balistid Sufflamen verres and the labrid Bodianus diplotaenia were identified as predators of small and medium size D. mexicanum; the labrids Thalassoma grammaticum and B. diplotaenia (juvenile) and the tetraodontid Arothron meleagris were attempted predators; and Canthigaster punctatissima and Holacanthus passer were scavengers. Larger sea urchins (> 30 mm) were also preyed upon during the tethering experiments. Furthermore, a clear effect of the site on survival of the different sea urchins’ sizes was noted. No difference in the sea urchin predator biomass was found among sites, which highlights the importance of site complexity on survival. At high and medium complexity sites, large individuals had better survival, while at the low complexity site, there was almost no differences in survival rates among the three size classes. Our results also show that a high abundance of these predatory fishes, above 0.04 ind m-2, guarantees a low sea urchin density. Below this threshold, a higher variability in sea urchin density is observed Despite not being registered with the video recordings, lobsters were observed once preying upon a large sea urchin individual.
Conclusions: This study identifies a keystone fish guild with high predation rate for Diadema in the National Park, which suggests that protective actions have positively benefited predatory fish and lobster populations.
References
Alvarado, J. J., Cortés, J., & Reyes-Bonilla, H. (2012). Reconstruction of Diadema mexicanum A. Agassiz, 1863 bioerosion impact on three Costa Rican Pacific coral reefs. Revista de Biología Tropical, 60(2), 121–132.
Alvarado, J. J., Reyes-Bonilla, H., & Benítez-Villalobos, F. (2015). Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental, estado de conocimiento y perspectivas futuras. Revista de Biología Tropical, 63(2), 135–157. http://dx.doi.org/10.15517/rbt.v63i2.23140
Alvarado, J. J., Cortés, J., Guzmán, H. M., & Reyes-Bonilla, H. (2016a). Bioerosion by the sea urchin Diadema mexicanum along Eastern Tropical Pacific coral reef. Marine Ecology, 37, 1088–1102. https://doi.org/10.1111/maec.12372
Alvarado, J. J., Cortés, J., Guzmán H., & Reyes-Bonilla, H. (2016b). Density, size, and biomass of Diadema mexicanum (Echinoidea) in Eastern Tropical Pacific coral reefs. Aquatic Biology, 24(3), 151–161. https://doi.org/10.3354/ab00645
Alvarado, J. J., Beita, A., Mena, S., Fernández-García, C., Guzmán, A. G., & Cortés, J. (2016). Ecosistemas coralinos del Parque Nacional Isla del Coco, Costa Rica, análisis estructural y temporal. Revista de Biología Tropical, 64(1), 153–175. https://doi.org/10.15517/rbt.v64i1.23423
Anderson, M. J. (2005). PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance [Software manual]. Department of Statistics, University of Auckland, New Zealand.
Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods [Computer software]. PRIMER-E. https://www.primer-e.com/our-software/
Andrew, N. L., & Underwood, A. J. (1993). Density-dependent foraging in the sea urchin Centrostephanus rodgersii on shallow subtidal reefs in New South Wales, Australia. Marine Ecology Progress Series, 99, 89–89.
Bak, R. P. M. (1994). Sea urchin bioerosion on coral reefs, place in the carbonate budget and relevant variables. Coral Reefs, 13, 99–103.
Bak, R. P. M., Carpay, M. J. E., & de Ruyter van Steveninck, E. D. (1984). Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curaçao. Marine Ecology Progress Series, 17, 105–108.
Benítez-Villalobos, F., & Valencia-Méndez, O. (2015). Consecuencias de la mortandad masiva del erizo Diadema mexicanum (Diadematoida: Diadematidae) sobre la comunidad íctica arrecifal en bahía La Entrega, Huatulco, México. Revista de Biología Tropical, 63(S2), 159–171.
Cabanillas-Terán, N., Loor-Andrade, P., Rodríguez-Barreras, R., & Cortés, J. (2016). Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador. PeerJ, 4, e1578. https://doi.org/10.7717/peerj.1578
Cajiao, M. V. (2005). Manual de Legislación del Parque Nacional Isla del Coco (1a ed.). Asociación Marviva.
Carpenter, R. C. (1984). Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Marine Biology, 82(1), 101–108. https://doi.org/10.1007/BF00392768
Clemente, S., & Hernández, J. C. (2007). Identificación de los depredadores capaces de controlar las poblaciones del erizo de lima (Diadema aff. antillarum) y su importancia para la gestión, conservación y recuperación de los fondos marinos de Canarias. Servicio de Publicaciones de la Caja General de Ahorros de Canarias.
Clemente, S., Hernández, J. C., & Brito, A. (2011). Context-dependent effects of marine protected areas on predatory interactions. Marine Ecology Progress Series, 437, 119–133. https://doi.org/10.3354/meps09243
Clemente, S., Hernández, J. C., Toledo, K., & Brito, A. (2007). Predation upon Diadema aff. antillarum in barren grounds in the Canary Islands. Scientia Marina, 71, 745–754. https://doi.org/10.3989/scimar.2007.71n4745
Clemente, S., Hernández, J. C., Rodríguez, A., & Brito, A. (2010). Identifying keystone predators and the importance of preserving functional diversity in sublittoral rocky-bottom areas. Marine Ecology Progress Series, 413, 55–67. https://doi.org/10.3354/meps08700
Dee, L. E., Witman, J. D., & Brandt, M. (2012). Refugia and top-down control of the pencil urchin Eucidaris galapagensis in the Galápagos Marine Reserve. Journal of Experimental Marine Biology and Ecology, 416–417, 135–143. https://doi.org/10.1016/j.jembe.2012.02.016
Eakin, C. M. (1996). Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982-1983 El Niño at Uva Island in the Eastern Pacific. Coral Reefs, 15, 109–119. https://doi.org/10.1007/BF01771900
Eakin, C. M. (2001). A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bulletin of Marine Sciences, 69, 171–186.
Edgar, G. J., & Stuart-Smith, R. D. (2014). Systematic global assessment of reef fish communities by the Reef Life Survey program. Scientific Data, 1, 140007. https://doi.org/10.1038/sdata.2014.7 ISSN 2052-4463.
Edgar, G. J., Stuart-Smith, R. D., Willis, T. J., Kininmonth, S., Baker, S. C., Banks, S., Barrett N. S., Becerro, M. A., Bernard, A. T. F., Berkhout, J., Buxton, C. D., Campbell, S. J., Cooper, A. T., Davey, M., Edgar, S. C., Försterra, G., Galván, D.E ., Irigoyen, A. J., Kushner, D. J., … Thomson, R. J. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature, 506, 216–220. https://doi.org/10.1038/nature13022
Edmunds, P. J., & Carpenter, R. C. (2001). Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribean reef. Proceedings of the National Academy of Sciences, 98(9), 5067–5071. https://doi.org/10.1073/pnas.071524598
Fourriére, M., Alvarado, J. J., Bocos, A. A., & Cortés, J. (2016). Updated chek-list and analysis of completeness of the fish fauna of Isla del Coco, Costa Rica. Marine Biodiversity, 47, 813–821.
Fricke, H. W. (1971). Fische als feinde tropischer seeigel. Marine Biology, 9, 328–338.
Friedlander, A. M., Zgliczynski, B. J., Ballesteros, E., Aburto-Oropeza, O., Bolaños, A., & Sala, E. (2012). The shallow-water fish assemblage of Isla del Coco National Park, Costa Rica: structure and patterns in an isolated, predator-dominated ecosystem. Revista de Biología Tropical, 60(S3), 321–338.
Glynn, P. W. (1984). Widespread coral mortality and the 1982–83 El Niño warming event. Environmental Conservation, 11(2), 133–146.
Glynn, P. W. (1988). El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea, 7, 129–160.
Glynn, P. W., Stewart, R. H., & McCosker, J. E. (1972). Pacific coral reefs of Panamá: structure, distribution and predators. Geological Runds, 61, 483–519.
Glynn, P. W., Riegl, B., Purkis, S., Kerr, J. M., & Smith, T. B. (2015). Coral reef recovery in the Galápagos Islands: the northernmost islands (Darwin and Wenman). Coral Reefs, 34, 421–436.
Guzmán, H. M. (1988). Distribución y abundancia de organismos coralívoros en los arrecifes coralinos de la Isla del Caño, Costa Rica. Revista de Biología Tropical, 36(2A), 191–207.
Guzmán, H. M., &, Cortés, J. (1992). Cocos Island (Pacific of Costa Rica) coral reefs after the1982-83 El Niño disturbance. Revista de Biología Tropical, 40(3) , 309–324.
Guzmán, H. M., & Cortés, J. (2001). Changes in reef community structure after fifteen years of natural disturbances in the eastern Pacific (Costa Rica). Bulletin of Marine Sciences, 69, 133–149.
Hernández, J. C. (2017). Influencia humana en las fluctuaciones poblacionales de erizos de mar. Revista de Biología Tropical, 65(S1), S23–S34.
Hereu, B. (2005). Movement patterns of the sea urchin Paracentrotus lividus in a marine reserve and an unprotected area in the NW Mediterranean. Marine Ecology, 26(1) , 54–62.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Calderia, K., & Eakin, C. M. (2007). Coral reefs under rapid climate chage and ocean acidification. Science, 318(5857), 1737–1742.
Jackson, J. B. C. (1997). Reefs since Columbus. Coral Reefs, 16, 23–32.
Jackson, J. B. C., Kirby, M. X., Berge, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Petersen, C. H., Steneck, R. S., Tegner, M. J., & Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–637.
Knowlton, N. (2001). Sea urchin recovery from mass mortality: New hope for Caribbean coral reefs? Proceedings of the National Academy of Sciences, 98 (9), 4822–4824.
Lessios, H. A. (1988). Mass mortality of Diadema antillarum in the Caribbean: what have we learn? Annual Review of Ecology, Evolution and Systematics, 19, 371–393.
Lessios, H. A., Kessing, B. D., Wellington, G. M., & Graybeal, A. (1996). Indo-Pacific echinoids in the Tropical Eastern Pacific. Coral Reef, 15, 133–142.
Levitan, D. R., & Genovese, S. J. (1989). Substratum-dependent predator-prey dynamics: patch reefs as refuges from gastropod predation. Journal of Experimental Marine Biology and Ecology, 130(2), 111–118.
Ling, S. D., & Johnson, C. R. (2012). Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions. Ecological Applications, 22, 1232–1245.
Ling, S. D., Johnson, C. R., Frusher, S. D., & Ridgway, K. R. (2009). Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proceedings of the National Academy of Sciences, 106(52), 22341–22345.
López-Garro, A., Zanella, I., Martínez, F., Golfín-Duarte, G., & Pérez-Montero, M. (2016). Illegal fishing at Isla del Coco National Park, Costa Rica. Revista de Biología Tropical, 64(S1), S249–S261.
López-Pérez, A., & López-López, D. A. (2016). Bioerosive impact of Diadema mexicanum on southern Mexican Pacific coral reefs. Ciencias Marinas, 42, 67–79.
McClanahan, T. R. (1988). Coexistence in a sea urchin guild and its implications to coral reef diversity and degradation. Oecologia, 77, 210–218.
McClanahan, T. R. (1995). Fish predators and scavengers of the sea urchin Echinometra mathaei in Kenyan coral-reef marine parks. Environmental Biology of Fishes, 43, 187–193.
McClanahan, T. R. (2000). Recovery of a coral reef keystone predator, Balistapus undulatus, in East African marine parks. Biological Conservation, 94, 191–198.
McClanahan, T. R., & Shafir, S. H. (1990). Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia, 83(3), 362–370.
McClanahan, T. R., & Muthiga, N. A. (2020). Echinometra. In J. M. Lawrence (Ed.), Sea Urchins: Biology and Ecology (4th ed., pp. 497–517). Elsevier. https://doi.org/10.1016/B978-0-12-819570-3.00028-7
Muthiga, N. A., & McClanahan, T. R. (2020). Diadema. In J. M. Lawrence (Ed.), Sea Urchins: Biology and Ecology (4th ed., pp. 397–418). Elsevier. https://doi.org/10.1016/B978-0-12-819570-3.00023-8
Nelson, B. V., & Vance, R. R. (1979). Diel foraging patterns of the sea urchin Centrostephanus coronatus as a predator avoidance strategy. Marine Biology, 51(3), 251–258.
Nichols, K. D., Segui, L., & Hovel, K. A. (2015). Effects of predators on sea urchin density and habitat use in a southern California kelp forest. Marine Biology, 162, 1227–1237.
Obonaga, L. D., Zucconi, M. G., & Londoño-Cruz, E. (2017). Bioerosión por ramoneo en los arrecifes coralinos del Pacífico colombiano: el caso de Diadema mexicanum (Echinoidea: Diadematidae). Boletín de Investigaciones Marinas y Costeras, 46, 41–54.
Ogden, J. C. (1977). Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs. Studies in Geology, 4, 281–288.
Paz-García, D. A., Valencia-Méndez, O., Domínguez-Domínguez, O., & Balart, E. F. (2016). Living on the edge: Diadema mexicanum in the upper Gulf of California. Marine Biodiversity, 48, 1261–1264.
Poder Ejecutivo. (2021, December 17). Decreto No. 43368. Reforma Amplía los límites del Parque Nacional Isla del Coco, Crea Área Marina de Manejo Montes Submarinos y Regionalización del Ministerio de Ambiente y Energía y reforma Reglamento a la Ley de Biodiversidad. Diario Oficial La Gaceta, 16 http://www.pgrweb.go.cr
Randall, J. E., Schroeder, R. E., & Starck, W. A. (1964). Notes on the biology of the echinoid Diadema antillarum. Caribbean Journal of Sciences, 4(2–3), 421–433.
Sala, E. (1997). Fish predators and scavengers of the sea urchin Paracentrotus lividus in protected areas of the north-west Mediterranean Sea. Marine Biology, 129, 531–539.
Sala, E., Ribes, M., Hereu, B., Zabala, M., Alvà, V., Coma, R., & Garrabou, J. (1998). Temporal variability in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula in the northwestern Mediterranean: comparison between a marine reserve and an unprotected area. Marine Ecology Progress Series, 168, 135–145.
Sammarco, P. W. (1982). Effects of grazing by Diadema antillarum Philippi on algal diversity and community structure. Journal of Experimental Marine Biology and Ecology, 65, 83–105.
Shears, N. T., Babcock, R. C., & Salomon, A. K. (2008). Context‐dependent effects of fishing: Variation in trophic cascades across environmental gradients. Ecological Applications, 18(8), 860–1873.
Sheppard-Brennand, H., Dworjanyn, S. A., & Poore, A. G. B. (2017). Global patterns in the effects of predator declines on sea urchins. Ecography, 40, 1029–1039.
Sonnenholzner, J. I., Ladah, L. B., & Lafferty, K. D. (2009). Cascading effects of fishing on Galapagos rocky reef communities: reanalysis using corrected data. Marine Ecology Progress Series, 375, 209–218.
Steneck, R. S. (2020). Regular sea urchins as drivers of shallow benthic marine community structure. In J. M. Lawrence (Ed.), Sea Urchins: Biology and Ecology (4th ed., vol 43, pp. 255–279). Elsevier. https://doi.org/10.1016/B978-0-12-819570-3.00015-9
Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., & Tegner, M. J. (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation, 29(4), 436–459.
Strain, E. M. A., Edgar, G. J., Ceccarelli, D., Stuart-Smith, R. D., Hosack, G. R., & Thomson, R. J. (2018). A global assessment of the direct and indirect benefits of marine protected areas for coral reef conservation. Diversity and Distributions, 25, 9–20.
Tebbett, S. B., & Bellwood, D. R. (2018). Functional links on coral reefs: Urchins and triggerfishes, a cautionary tale. Marine Environmental Research, 141, 255–263.
Turingan, R. G., & Wainwright, P. C. (1993). Morphological and functional bases of durophagy in the queen triggerfoish, Balistes vetula (Pisces, Tetraodontiformes). Journal of Morphology, 215, 101–108.
Uthicke, S., Schaffelke, B., & Byrne, M. (2009). A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecological Monographs, 79(1), 3–24.
Vance, R. R., & Schmitt, R. J. (1979). The effect of the predator-avoidance behavior of the sea urchin, Centrostephanus coronatus, on the breadth of its diet. Oecologia, 44(1), 21–25.
White, E. R., Myers, M. C., Fleming, J. M., & Baum, J. K. (2014). Shifting elasmobranch community assemblages at Cocos Island – an isolated marine protected area. Conservation Biology, 29, 1186–1197.
Witman, J. D., Smith, F., & Novak, M. (2017). Experimental demonstration of a trophic cascade in the Galápagos rocky subtidal: Effects of consumer identity and behavior. PLoS ONE, 12, e0175705.
Young, M. A. L., & Bellwood, D. R. (2012). Fish predation on sea urchins on the Great Barrier Reef. Coral Reefs, 31, 731–738.
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.