Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Effect of gamete aging on fertilization success of the sea urchin Arbacia dufresnii (Arbacioida: Arbaciidae)
PDF
HTML
EPUB

Keywords

short-term storage; gamete handling; sperm; eggs; echinoderms.
almacenamiento a corto plazo; manejo de gametos; esperma; óvulos; equinodermos.

How to Cite

Fernández, J. P., Di Marco, F., Rubilar, T., Cledón, M., & Gonzalez Pisani, X. (2024). Effect of gamete aging on fertilization success of the sea urchin Arbacia dufresnii (Arbacioida: Arbaciidae). Revista De Biología Tropical, 72(S1), e59013. https://doi.org/10.15517/rev.biol.trop.v72iS1.59013

Abstract

Introduction: Short-term gametes storage is an inexpensive and simple technique that allows the use of the same batch of eggs or sperm at different times, maximizing the application of research protocols and the use of gametes in production. Arbacia dufresnii is a sea urchin species with proven aquaculture potential and already used in the nutraceutical industry. Aging of its gametes is unknown and is a needed information to scale up the production.

Objective: Determine the effect of male and female gamete aging on the fertilization success of Arbacia dufresnii. This will allow optimizing the use of gametes after collection decoupling spawning from fertilization.

Methods: A. dufresnii individuals were induced to spawn and gametes were kept at 12 ± 1 °C throughout each bioassay. Sperm was separated into two treatments: activated sperm in seawater (AS), and dry sperm (DS). Two bioassays were made: Bioassay 1 evaluated the effect of time on fertility by performing fertilization tests at 0 h, 24 h, 48 h, 72 h, and 96 h after spawning. Bioassay 2 evaluated the contribution of each type of aged gamete on fertility, combining aged gametes (96 h) with fresh gametes (0 h).

Results: Bioassay 1: the fertilization success obtained by combining eggs (E) with AS or DS presented important differences. While the fertilization success remained acceptable (greater than 50 %) for up to 72 h using ExDS, it only remained acceptable for up to 48 h using ExAS. Bioassay 2: acceptable fertilization success was found by combining aged E (96 h) with fresh sperm, or aged DS (96 h) with fresh E, but not using aged AS with fresh E.

Conclusions: The findings of this work show that fertilization success in A. dufresnii gametes remains relatively unchanged for up to 48 h after spawning when combining ExAS, and for up to 72 h when combining ExDS. However, when combining aged E or aged DS with a fresh gamete, post-collection fertilization can be extended up to 96 h. In this work, the first steps have been taken to understand the conservation time of A. dufresnii gametes with minimum intervention.

https://doi.org/10.15517/rev.biol.trop..v72iS1.59013
PDF
HTML
EPUB

References

Avaro, M., Vera-Piombo, M., Carabajal, E., Gittardi, A., & Rubilar, T. (2022, November 22–25). Determinación de 1,4-Naftoquinonas polihidroxiladas en huevas de Arbacia dufresnii de campo In Libro de Resúmenes V Congreso Latinoamericano de Equinodermos [Congress]. Red Latinoamericana de Equinodermos, Virtual.

Barbieri, E. S, Rubilar, T., Gázquez, A., Avaro, M., Seiler, E. N., Vera-Piombo, M., Gittardi, A., Chaar, F. B., Fernández, J. P., & Sepúlveda, L. R. (2021). Sea Urchin Pigments as Potential Therapeutic Agents Against the Spike Protein of SARS-CoV-2 Based on in Silico Analysis. ChemRxiv, 1, 1–10. http://dx.doi.org/10.26434/chemrxiv.12568595.v1.

Beirão, J., Boulais, M., Gallego, V., O’Brien, J. K., Peixoto, S., Robeck, T. R., & Cabrita, E. (2019). Sperm handling in aquatic animals for artificial reproduction. Theriogenology, 133, 161–178. https://doi.org/10.1016/j.theriogenology.2019.05.004.

Benzie, J. A. H., & Dixon, P. (1994). The effects of sperm concentration, sperm: egg ratio, and gamete age on fertilization success in crown-of-thorns starfish (Acanthaster planci) in the laboratory. Biology Bulletin, 186, 139–152. https://doi.org/10.2307/1542048

Bernasconi, I. (1947). Distribución geográfica de los equinoideos argentinos. Anales de la Sociedad Argentina de Estudios Geográficos, 6, 97–114.

Bokor, Z., Zarski, D., Palinska-Zarska, K., Krejszeff, S., Krol, J., Radoczi, J., Horvath, A., Varkonyi, L., Urbanyi, B., & Bernath, G. (2021). Standardization of sperm management for laboratory assessment of sperm quality and in vitro fertilization in Eurasian perch (Perca fluviatilis). Aquaculture International, 29, 2021–2033. https://doi.org/10.1007/s10499-021-00731-4

Boveri, T. (1901). Die Polarität von Oocyte, Ei und Larve des Strongylocentrotus lividus. Zoologische Jahrbü- cher. Abteilung für Anatomie und Ontogenie der Tiere Abteilung für Anatomie und Ontogenie der Tiere, 14, 630– 653.

Briggs, E., & Wessel, G. M. (2006). In the beginning: Animal fertilization and sea urchin development. Developmental Biology, 300, 15–26. https://doi.org/10.1016/j.ydbio.2006.07.014

Brogger, M. I., Gil, D. G., Rubilar, T., Martinez, M. I., Díaz de Vivar, M. E., Escolar, M., Epherra, L., Pérez, A, F., & Tablado, A. (2013). Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In J. J. Alvarado, & F. A. Solís-Marín (Eds.), Echinoderm Research and Diversity in Latin America (pp. 359–402). Springer.

Brusca, R. C., & Brusca G. J. (2003). Invertebrates (2nd ed.). Sinauer Associates.

Cejko, B. I., Zarski, D., Sarosiek, B., Dryl, K., Palinska-Zarska, K., Skorupa, W., & Kowalski, R. K. (2022). Application of artificial seminal plasma to short-term storage of a large volume of common carp (Cyprinus carpio) sperm for two weeks under controlled conditions. Aquaculture, 546, 737–785. https://doi.org/10.1016/j.aquaculture.2021.737385

Cirino, P., Ciaravolo, M., Paglialonga, A., & Toscano, A. (2017). Long-term maintenance of the sea urchin Paracentrotus lividus in culture. Aquaculture Reports, 7, 27–33. https://doi.org/10.1016/j.aqrep.2017.04.003

Contreras, P., Dumorne, K., Ulloa-Rodríguez, P., Merino, O., Figueroa, E., Farías, J. G., Valdebenito, I., & Risopatron, J. (2020). Effects of short-term storage on sperm function in fish: a review. Reviews in Aquaculture, 12, 1373–1389. https://doi.org/10.1111/raq.12387

Chaar, F. B., Fernández, J. P., Sepúlveda, L. R., & Rubilar, T. (2021). The influence of density on survival and larval development in the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea). Revista de Biología Tropical, 69(S1), S334–S345. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46365

Chiarelli, R., Martino, C., & Roccheri, M. C. (2019). Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental indicators. Cell Stress Chaperones, 24, 675–687. https://doi.org/10.1007/s12192-019-01010-1

Dufossé, A. (1847). Observations sur le developpement des oursins. Annales des Sciences Naturelles, 7, 44–52.

Epel, D., Vacquier, V. D., Peeler, M., Miller, P., & Patton, C. (2004). Sea urchin gametes in the teaching laboratory: Good experiments and good experiences. Methods in Cell Biology, 74, 797–823. https://doi.org/10.1016/S0091-679X(04)74033-9

Epherra, L., Gil, D., Rubilar, T., Perez-Gallo, A. S., Reartes, B., & Tolosano, J. A. (2015). Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Marine and Freshwater Research, 66, 329–342. https://doi.org/10.1071/MF14080

Fabbrocini, A., & D’Adamo, R. (2011). Gamete and embryos of sea urchins (Paracentrotus lividus, Lmk 1816) reared in confined conditions: their use in toxicity bioassays. Chemistry and Ecology, 27(2), 105–115. https://doi.org/10.1080/02757540.2011.625931

Fabbrocini, A., Silvestri, F., & D’Adamo, R. (2021). Development of alternative and sustainable methodologies in laboratory research on sea urchin gametes. Marine Environmental Research, 167, 105–282. https://doi.org/10.1016/j.marenvres.2021.105282

Fabbrocini, A., Silvestri, F., & D’Adamo, R. (2023). Effects of post-collection storage conditions on sperm motility longevity in the blunt sea urchin Sphaerechinus granularis. Aquaculture, 563,738–813. https://doi.org/10.1016/j.aquaculture.2022.738913

Fernández, J. P., Chaar, F. B., Epherra, L., González-Aravena, J. M., & Rubilar, T. (2021). Embryonic and larval development is conditioned by water temperature and maternal origin of eggs in the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea). Revista de Biología Tropical, 69(S1), S452–S463. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46384

Garner, S., Zysk, I., Byrne, G., Kramer, M., Moller, D., Taylor, V., & Burke, R. D. (2016). Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms. Development, 143, 286–297. https://doi.org/10.1242/dev.124503

Hinman, V. F., & Burke, R. D. (2018). Embryonic neurogenesis in echinoderms. Wiley Interdisciplinary Reviews: Developmental Biology, 7, e316. https://doi.org/10.1002/wdev.316

Hurvich, C. M., Simonoff, J. S., & Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2), 271–293. https://doi.org/10.1111/1467-9868.00125.

InfoStat. (2016). InfoStat (Versión 2016)[Computer software]. Grupo InfoStat, FCA.

Kiyomoto, M. (2019). Long-term preservation of echinoderm sperm under non-cryo conditions for ecotoxicological bioassay. Marine Environmental Research, 144, 246–249. https://doi.org/10.1016/j.marenvres.2019.01.004

Kiyomoto, M., Hamanaka, G., Hirose, M., & Yamaguchi, M. (2014). Preserved echinoderm gametes as a useful and ready-to-use bioassay material. Marine Environmental Research, 93, 102–105. https://doi.org/10.1016/j.marenvres.2013.08.014

Kristan, J., Samarin, A. M., Malinovskyi, O., & Policar, T. (2020). Gamete management for artificial reproduction of northern pike Esox lucius (Linnaeus, 1758). Aquaculture, 528, 735575. https://doi.org/10.1016/j.aquaculture.2020.735575

Lera, S., & Pellegrini, D. (2006). Evaluation of the fertilization capability of Paracentrotus lividus sea urchin storaged gametes by the exposure to different aqueous matrices. Environmental Monitoring and Assessment, 119, 1–13. https://doi.org/10.1007/s10661-005-9000-0

Lawrence, J. M. (2007). Edible sea urchins: Use and life history strategies. In J. M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (pp. 1–6). Elsevier. https://doi.org/10.1016/S0167-9309(07)80065-2

Matranga, V., & Corsi, I. (2012). Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Marine Environmental Research, 76, 32–40. https://doi.org/10.1016/j.marenvres.2012.01.006

McClay, D. R. (2011). Evolutionary crossroads in developmental biology: sea urchins. Development, 138, 2639–2648. https://doi.org/10.1242/dev.048967

Meidel, S. K., & Yund, P. O. (2001). Egg Longevity and Time-Integrated Fertilization in a Temperate Sea Urchin (Strongylocentrotus droebachiensis). Biology Bulletin, 201, 84–94.

Rahman, S., Tsuchiya, M., & Uehara, T. (2009). Effects of temperature on hatching rate, embryonic development and early larval survival of the edible sea urchin, Tripneustes gratilla. Biologia (Section Zoology), 64, 768–775. https://doi.org/10.2478/s11756-009-0135-2

Ramos-Júdez, S., González, W., Dutto, G., Mylonas C. C., Fauvel, C., & Duncan, N. (2019). Gamete quality and management for in vitro fertilisation in meagre (Argyrosomus regius). Aquaculture, 509, 227–235. https://doi.org/10.1016/j.aquaculture.2019.05.033

R Core Team. (2016). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/.

Rubilar, T., Barbieri, E. S., Gazquez, A., & Avaro, M. (2021). Sea urchin pigments: echinochrome a and its potential implication in the cytokine storm syndrome. Marine Drugs, 19(5), 267. https://doi.org/10.3390/md19050267

Rubilar, T., & Cardozo, D. (2021). Bue growth: sea urchin sustainable aquaculture, innovative approaches. Revista de Biología Tropical, 69(S1), S474–S486. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46388

Rubilar, T., & Crespi-Abril, A. (2017). Does Echinoderm research deserve an ethical consideration? Revista de Biología Tropical, 65(S1), S11–S22. https://doi.org/10.15517/rbt.v65i1-1.31662

Rubilar, T., Epherra, L., Deias-Spreng, J., Díaz De Vivar, M. E., Avaro, M., Lawrence, A. L., & Lawrence, J. M. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4), 1083–1093. https://doi.org/10.2983/035.035.0431

Sepúlveda, L. R., Fernandez, J. P., Vera-Piombo, M., Chaar, F. B., & Rubilar, T. (2021). Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity. Revista de Biología Tropical, 69(S1), S464–S473. http://dx.doi.org/10.15517/rbt.v69isuppl.1.46386

Stefansonn, G., Kristinsson, H., Ziemer, N., Hannon, C., & James, P. (2017). Markets for Sea Urchins: A Review of Global Supply and markets [Technical report]. Internal Matís Reports: Skýrsla Matís.

Strathmann, M. F. (1987). Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast: Data and Methods for the Study of Eggs, Embryos, and Larvae. The University of Washington Press.

Sun, J., & Chiang, F. (2015). Use and Exploitation of Sea Urchins. In S. D. Eddy, & N. Brown (Eds), Echinoderm Aquaculture (pp. 25–46). Wiley-Blackwell.

Tsang, B., Zahid, H., Ansari, R., Lee, R. C. Y., Partap, A., & Gerlai, R. (2017). Breeding zebrafish: a review of different methods and a discussion on standardization. Zebrafish, 14(6), 561–573. https://doi.org/10.1089/zeb.2017.1477

Vera-Piombo, M., Avaro, M., Gittardi, A., & Rubilar, T. (2022, November 22–25). Efecto de la dieta enriquecida con carotenos naturales en los huevos de erizo de mar Arbacia dufresnii en cultivo. In Libro de Resúmenes V Congreso Latinoamericano de Equinodermos [Congress]. Red Latinoamericana de Equinodermos, Virtual.

Williams, D. H. C., & Anderson, D. T. (1975). The reproductive system, embryonic development, larval development and metamorphosis of the sea urchin Heliocidaris erythrogramma (Val.) (Echinoidea: Echinometridae). Australian Journal of Zoology, 23(3), 371–403.

Williams, M. E., & Bentley, M. G. (2002). Fertilization success in marine invertebrates: The influence of gamete age. Biology Bulletin, 202, 34–42.

Yasui, G. S., Senhorini, J. A., Shimoda, E., Pereira-Santos, M., Nakaghi, L. S. O., Fujimoto, T., Arias-Rodriguez, L., & Silva, L. A. (2015). Improvement of gamete quality and its short-term storage: an approach for biotechnology in laboratory fish. Animal, 9(3), 464–470. https://doi.org/10.1017/S1751731114002511

Zar, J. H. (1984). Biostatistical Analysis-Prentice-Hall Inc. Englewood Cliffs.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.