Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Microstructure of the labial palps in the genera Aphrissa and Rhabdodryas (Lepidoptera: Pieridae, Coliadinae) from Mexico

How to Cite

Vargas-Fernández, I., & Llorente-Bousquets, J. E. (2024). Microstructure of the labial palps in the genera Aphrissa and Rhabdodryas (Lepidoptera: Pieridae, Coliadinae) from Mexico. Revista De Biología Tropical, 72(1). https://doi.org/10.15517/rev.biol.trop.v72i1.59488

Abstract

Introduction: We studied the labial palps in three species belonging to two pierids from the Neotropical region. Our examination was based on ten male and eight female specimens from Mexican fauna. Objective: We describe the microstructure of the palp focusing on the Reuter's sensitive patch and the Palp-pit organ. Additionally, we aim to characterize the type, dimensions, and distribution of the sensilla. We aim to discern any variations between sexes and species. Methods: The labial palps were separated from the head and their scales were removed. Subsequently, the palps were mounted for observation under the scanning electron microscope. Micrographs were captured of both the bare and scaled palps. We measure the three segments and sensilla using Photoshop CS3 tools. Results: In both genera, the basal and mesial segments exhibit lateral flattening, whereas the distal segment is spherical or cylindrical. Significant differences were observed in the dimensions of the distal segment among the females of the two Aphrissa species compared to their male counterparts. The sensilla on the outer surface of the segments are chaetic and, while those at the base of the Palp-pit are coeloconic. The sensitive patch has numerous smooth, cone-like microtrichia, located on the basal segment and with lower density on the upper section of the Palp-pit, reaching the apex of the distal segment. Conclusion: The morphology displayed by the coeloconic and chaetic sensilla of the labial palps in Aphrissa and Rhabdodryas is consistent with that described for the coliadine butterfly Prestonia, as well as other previously studied genera. This suggests that the labial palps could serve as a system of microstructural characters in taxonomy.

https://doi.org/10.15517/rev.biol.trop..v72i1.59488

References

Ackery, P. R., de Jong, R., & Vane-Wright, R. I. (1999). The butterflies: Hedyloidea, Hesperioidea and Papilionoidea. En Lepidoptera, moths and butterflies. 1. Evolution, systematics and biogeography. Handbook of Zoology 4 (35), Lepidoptera (Ed. N. P. Kristensen), (pp. 263–300). Berlin: de Gruyter.

Amat, C., Marion-Poll, F., Navarro-Roldán, M. A., & Gemeno, C. (2022). Gustatory function of sensilla chaetica on the labial palps and antennae of three tortricid moths (Lepidoptera: Tortricidae). Scientific Reports, 12, 18882. https://doi.org/10.1038/s41598-022-21825-w

Barcaba, T., & Krenn, H. W. (2015). The mouthparts of adult Indian meal moths, Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae). Entomologica Austriaca, 22, 91–105.

Braby, M. F., Vila, R., & Pierce, N. E. (2006). Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zoological Journal of the Linnean Society, 147(2), 239–275. https://doi.org/10.1111/j.1096-3642.2006.00218.x

Briscoe, A. D., Macias-Muñoz, A., Kozak, K. M., Walters, J. R., Yuan, F., Jamie, G. A., Martin, S. H., Dasmahapatra, K. K., Ferguson, L. C., Mallet, J., Jacquin-Joly, E., & Jiggins, C. D. (2013). Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLoS Genetics, 9, e1003620. https://doi.org/10.1371/journal.pgen.1003620

Brown, F. M. (1931). A revision of the genus Aphrissa (Lepidoptera). American Museum Novitates, 454, 1–14.

Butler, A. (1873). Monograph of the Genus Callidryas. E.W. Jansen.

Chen, J., & Hua, B. (2016). Sexual dimorphism of adult labial palps of the peach fruit moth Carposina sasakii Matsumura (Lepidoptera: Carposinidae) with notes on their sensilla. Acta Zoologica (Stockholm), 97, 42–48. https://doi.org/10.1111/azo.12103

Chen, Q., Liu, X., Cao, S., Ma, B., Guo, M., Shen, J., & Wang, G. (2021). Fine structure and olfactory reception of the labial palps of Spodoptera frugiperda. Frontiers in Physiology, 12, 680697. https://doi.org/10.3389/fphys.2021.680697

Choi, K. S., Ahn, S. J., Kim, S. B., Ahn, J. J., Jung, B. N., & Go, S. W. (2018). Elevated CO2 may alter pheromonal communication in Helicoverpa armigera (Lepidoptera: Noctuidae). Physiological Entomology, 43(3), 169–179. https://doi.org/10.1111/phen.12239

D’Almeida, R. F. (1939). Revisão do gênero Aphrissa Butl. (Lepid., Pieridae). Boletim Biológico, 4(3), 423–443.

Dong, J. F., Liu, H., Tang, Q. B., Liu, Y., Zhao, X. C., & Wang, G. R. (2014). Morphology, type and distribution of the labial-palp-pit organ and its sensilla in the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae.) Acta Entomologica Sinica, 57(6), 681–687. https://doi.org/10.16380/j.kcxb.2014.57.6.681687

El-Ghany, A. N. M., & Faucheux, M. (2021). Sensory structures on the larval antennae and mouthparts of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Zoologischer Anzeiger, 294, 28e38. https://doi.org/10.1016/j.jcz.2021.07.008

Ehrlich, P. R. (1958). The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea). University of Kansas Science Bulletin, 39, 365–364. http://hdl.handle.net/1808/7853

Faucheux, M. (2008). Mouthparts and associated sensilla of a South American moth, Synempora andesae (Lepidoptera: Neopseustidae). Revista de la Sociedad Entomológica Argentina, 67(1-2), 21–33.

Godman, F. D., & Salvin, O. (1879). Insecta. Lepidoptera-Rhopalocera. Biologia Centrali Americana. (Vol. II, pp. 782). Taylor and Francis.

Gorb, S. N. (1997). Ultrastructural architecture of the microtrichia of the insect cuticle. Journal of Morphology, 234, 1–10. https://doi.org/10.1002/(SICI)1097-4687(199710)234:1%3C1::AID-JMOR1%3E3.0.CO;2-I

Gouin, A., Bretaudeau, K., Nam, S., Giménez, J. -M., Aury, B., Duvic, F., Hilliou, N., Durand, N., Montagné, I., & Darboux, S. (2017). Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 7(1), 11816. https://doi.org/10.1038/s41598-017-10461-4

Hernández-Mejía, B. C., Flores-Gallardo, A., & Llorente-Bousquets, J. (2014). Morfología del corion en la subfamilia Coliadinae (Lepidoptera: Pieridae). Southwestern Entomologist, 39(4), 853–885. http://dx.doi.org/10.3958/059.039.0416

Kanost, M. R., Arrese, E. L., Cao, X., Chen, Y. R., Chellapilla, S., & Goldsmith, M. R. (2016) Multifaceted biological insights from a draft genome sequence of the tobacco hornwormmoth, Manduca sexta. Insect Biochemistry and Molecular Biology, 76, 118–147. http://dx.doi.org/10.1016/j.ibmb.2016.07.005

Kent, K. S., Harrow, I. D., Quartararo, P., & Hildebrand, J. G. (1986). An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell and Tissue Research, 245, 237–245. http://dx.doi.org/10.1007/BF00213927.

Klots, A. B. (1931). A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomologica Americana, 12, 139–242.

Krenn, H. W., & Penz, C. M. (1998). Mouthparts of Heliconius butterflies Lepidoptera: Nymphalidae a search for anatomical adaptations to pollen feeding behavior. International Journal of Insect Morphology and Embryology, 27(4), 301–309. https://doi.org/10.1016/S0020-7322(98)00022-1

Kristensen, N. P. (1976). Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). Zeitschrift für zoologische Systematik und Evolutionsforschung, 14, 25–33. https://doi.org/10.1111/j.1439-0469.1976.tb00515.x

Lamas, G. (2004). Pieridae. En G. Lamas (Ed.), Checklist: Part 4A. Hesperioidea-Papilionoidea. (Vol. 5A, pp. 439). Association for Tropical Lepidoptera.

Lastra-Valdés, J., da Silva, J. R. M. C., & Duarte, M. (2020). Morphology and histology of vom Rath’s organ in brush-footed butterflies (Lepidoptera: Nymphalidae). PLoS ONE, 15(4), e0231486. https://doi.org/10.1371/journal.pone.0231486

Monroe, J. L. (2016). The large sulphurs of the Americas (p. 109). The International Biodiversity Foundation.

Murillo-Ramos, L., Hernández-Mejía, C., & Llorente-Bousquets, J. (2016). The phylogenetic position of Aphrissa (Lepidoptera: Pieridae: Coliadinae) within its relatives the ancient American Catopsilias. Zootaxa, 4147(5), 538–550. https://doi.org/10.11646/zootaxa.4147.5.2

Murillo-Ramos, L., Torres, R. H., Águila, R. N., & Ayazo, R. (2018). New insights on the taxonomy and phylogenetic relationships of the Neotropical genus Phoebis (Pieridae: Coliadinae) revealed by molecular and morphological data. Zootaxa, 4457(1), 179–188. http://dx.doi.org/10.11646/zootaxa.4457.1.10

Myers, J. H., Monro, J., & Murray, N. (1981). Egg clumping, host plant selection and population regulation in Cactoblastis cactorum (Lepidoptera). Oecologia, 51, 7–13. https://doi.org/10.1007/BF00344644

Pearce, S. L., Clarke, D. F., East, P. D., Elfekih, S., Gordon, K. H. J., Jermiin, L. S., McGaughran, A., Oakeshott, J. G., Papanikolaou, A., Perera, O. P., Rane, R. V., Richards, S., Tay, W. T., Walsh, T. K., Anderson, A., Anderson, C. J., Asgari, S., Board, P. G., Bretschneider, A., … Wu, Y. D. (2017). Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 15, 63. https://doi.org/10.1186/s12915-017-0402-6

Salazar, J. A. (2008). Some studies on palpi belonging to neotropical charaxids and notes on the wing pattern and behavior of several genera (Lepidoptera: Nymphaloidea, Charaxidae). Boletín Científico Centro de Museos Museo de Historia Natural, Universidad de Caldas, 12, 171–205.

Song, Y. Q., Sun, H. Z., & Wu, J. X. (2016). Ultrastructural characteristics of the proboscis and the labial palp-pit organ in the oriental fruit moth, Grapholita molesta. Bulletin of Insectology, 69(1), 59–66. http://www.bulletinofinsectology.org/

Stange, G. (1997). Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia, 110, 539–545. https://doi.org/10.1007/s004420050192.

Talbot, G. (1935). Pieridae. Lepidopterorum Catalogus. 66, 386–697.

Vargas-Fernández, I., Castro-Gerardino, D. J., & Llorente-Bousquets, J. E. (2018). Palpos labiales de la mariposa Prestonia clarki (Lepidoptera: Pieridae): Ultraestructura de órganos sensoriales y sensilas. Revista de Biología Tropical, 66(3), 1324–1346. http://dx.doi.org/10.15517/rbt.v66i3.31258

Wahlberg, N., Rota, J., Braby, M. F., Pierce, N. E., & Wheat, C. W. (2014). Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zoologica Scripta, 43(6), 641–650. https://doi.org/10.1111/zsc.12075

Wanner, K. W., & Robertson, H. M. (2008). The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Molecular Biology, 17(6), 621–629. https://doi.org/10.1111/j.1365-2583.2008.00836.x.

Xu, W. (2020). How do moth and butterfly taste?—Molecular basis of gustatory receptors in Lepidoptera. Insect Science, 27, 1148–1157. https://doi.org/10.1111/1744-7917.12718.

You, M., Yue, Z., He, W., Yang, X., Yang, G., Xie, M., Zhan, D., Baxter, S. W., Vasseur, L., Gurr, G. M., Douglas, C. J., Bai, J., Wang, P., Cui, K., Huang, S., Li, X., Zhou, Q., Wu, Z., Chen, Q., … Wang, J. (2013). A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 45, 220–225. https://doi.org/10.1038/ng.2524

Zhan, S., Merlin, C., Boore, J. L., & Reppert, S. M. (2011). The monarch butterfly genome yields insights into long-distance migration. Cell, 147, 1171–1185. https://doi.org/10.1016%2Fj.cell.2011.09.052

Zhang, J., Cong, Q., Shen, J., Opler, P. A., & Grishin, N. V. (2021). Genomics-guided refinement of butterfly taxonomy. The Taxonomic Report of the International Lepidoptera Survey, 9(3), 1–55. https://doi.org/10.5281%2Fzenodo.5630311

Zhao, X. C., Tang, Q. B., Berg, B. G., Liu, Y., Wang, Y. R., Yan, F. M., & Wang, G. R. (2013). Fine structure and primary sensory projections of sensilla located in the labial-palp-pit organ of Helicoverpa armigera (Insecta). Cell Tissue Research, 353(3), 399–408. https://doi.org/10.1007/s00441-013-1657-z.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Biología Tropical

Downloads

Download data is not yet available.