Abstract
Introduction: Matusagaratí lagoon is an ecosystem with diverse habitats and environmental conditions that determine the diversity and distribution of aquatic life. Despite hydraulic connectivity, aquatic habitats generated by this diversity of environmental conditions could determine the composition and structure of ictic assemblies. Objective: The study seeks to understand the structure and diversity of fish in three of these habitats. Methods: Multi-habitat sampling was carried out between March 2022 and September 2023, covering periods of drought and flooding, at 29 sites using different fishing techniques. Results: 1913 fish from 50 species and 27 families were collected in an area of approximately 320 km2. Three fish sets were identified, each associated with a specific habitat. The river corridor of the Tuira River had the greatest diversity, followed by the tidal streams and lagoons. Conclusions: The analysis revealed notable differences between these habitats, with the river corridor dominated by peripheral species, while lagoons showed low diversity with generalized or hypoxia-adapted species. The presence of species such as Hoplosternum punctatum, Ageneiosus pardalis and Pimelodus punctatus in the wetland evidences the influence of the Choco region on Panama´s ichthyofauna. These findings could have important implications for the formulation of wetland conservation strategies.
References
REFERENCIAS
Aguirre-León, A., Díaz-Ruiz, S., & Gazca-Castro, M. (2020). Variación espacio-temporal de la estructura ecológica de la comunidad de peces en la Laguna del Ostión, Veracruz, México. Spatio-temporal variation on the ecological structure of the fish community in the Ostión Lagoon, Veracruz, Mexico. Revista de Ciencias Marinas y Costeras, 12(2), 29-55.
ARAP. (2011). Guía de peces para la identificación de especies comerciales. Dirección de Investigación y Desarrollo. Documento Técnico de Pesca. ARAP.
Baigún, C. R., & Valbo-Jorgensen, J. (2023). La situación y tendencia de las pesquerías continentales artesanales de América Latina y el Caribe. FAO Documento Técnico de Pesca y Acuicultura. FAO.
Barletta, M., Jaureguizar, A. J., Baigun, C., Fontoura, N. F., Agostinho, A. A., Almeida-Val, V. M., & Val, A. L. (2010). Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. Journal of Fish Biology, 76(9), 2118-2176.
Blanchet, F. G., Legendre, P., & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89(9), 2623-2632.
Bohomme, C., Céréghino, R., Carrias, J.-F., Compin, A., Corbara, B., Jassey, V. E. J., Leflaive, J., Farjalla, V. F., Marino, N. A. C., Rota, T., Srivastava, D. S., & Leroy, C. (2021). In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. J. Anim. Ecol., 90(9), 2015-2026.
Borcard, D., Gillet, F., Legendre, P., Borcard, D., Gillet, F., & Legendre, P. (2018). Spatial analysis of ecological data. Numerical Ecology with R, 299-367.
Breder, J. (1925). New loricariate, characin, and poeciliid fishes from the rio Chucunaque, Panama. American Museum Novitates, (180), 1-9.
Breder, J. (1927). The fishes of the rio Chucunaque drainage, eastern Panama. Bulletin of the AMNH, 57(3), 91-176.
Bussing, W. A. (1987). Peces de las aguas continentales de Costa Rica. Editorial Universidad de Costa Rica.
Candanedo, I., & Ibáñez, A. (2020). Matusagaratí regala dos especies nuevas de plantas a Panamá. Revista Imagina, 13, 15-16.
Carol, E., Alvarez, M., Candanedo, I., Saavedra, S., Arcia, M., & Franco, A. (2020). Surface water–groundwater interactions in the Matusagaratí wetland, Panama. Wetlands Ecology and Management, 28, 971-982.
Carol, E., Alvarez, M., Santucci, L., Candanedo, I., & Arcia, M. (2022). Origin and dynamics of surface water - groundwater flows that sustain the Matusagaratí Wetland, Panamá. Aquatic Sciences, 84(1), 1-16.
Chao, A., Gotelli, N., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67.
De Caceres, M., & Jansen, F. (2023). Relationship between species and groups of sites. Package ‘indicspecies’. Ver. 1.7.14. https://cran.r-project.org/web/packages/indicspecies/ indicspecies.pdf
Deacon, A., Mahabir, R., Inderlall, D., Ramnarine, I. W., & Magurran, A. (2017). Evaluating detectability of freshwater fish assemblages in tropical streams: is hand-seining sufficient? Environmental Biology of Fishes, 100, 839-849.
De Souza, L. S. (2011). Hydrological link between the Amazon river basin and the eastern Guiana shield on the Neotropical ichthyofauna. Tesis de Doctorado. Auburn University.
Dufrêne , M., & Legendre, P. (1997). Species assemblages and indicator species: the need for aflexible asymmetrical approach. EcologicalMonographs, 67(3), 345-366.
Festa, E. (1909). Nel Darien e nell' Ecuador: diario di viaggio di un naturalista. Unione Tip.-Editrice Torinense.
Garcés B., H. A., & García R., J. (2007). Inventario ictiológico de la cuenca del río Balsas, Parque Nacional Darién, Panamá. Tecnociencia, 9(2), 45-57.
Garutti, V. (2000). Lateral migration of liposarcus Anisitsi (Siluriformes, Loricariidae) in the Preto River, alto Parana Basin, Brazil. Iheringia, 88, 25-32.
González G., R. (2021). Elementos de los peces dulceacuícolas de Panamá. Edición privada.
González G., R. (2008). Nota sobre la migración masiva de peces en dos ríos del Pacífico de la provincia de Coclé, Panamá.Tecnociencia, 10(1), 51-61.
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456.
Incagnone, G., Marrone, F., Barone, R. et al. (2015). How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia, 750, 103–123.
Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271-280.
Loftin, H. (1965). The geographical distribution of freshwater fishes in Panama. The Florida State University.
Maldonado‐Ocampo, J. A., Usma O., J. S., Villa-Navarro, F. A., Ortega-Lara, A., Prada-Pedreros, S., Jiménez, L. F., Jaramillo V., U., Arango, A, Rivas, T., & Sánchez G., G. C. (2012). Peces dulceacuícolas del Chocó biogeográfico de Colombia. WWF Colombia, Instituto Humboldt, Universidad de Tolima, Autoridad Nacional de Agricultura y Pesca y Pontificia Universidad Javeriana.
McGeoch, M., Van Rensburg, B., & Botes, A. (2002). The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology, 39(4), 661-672.
Meek, S. E., & Hildebrand, S. F. (1913). New species of fishes from Panama. Field Museum of Natural History Publication, Zoological Series, 10, 77-91.
Milani, V., Machado, F. A., & Silva, V. C. F. (2010). Fish assemblages associated to aquatic macrophytes in wetland environments of Pantanal de Poconé, State of Mato Grosso, Brazil. Biota Neotropica, 10(2), 261-270.
MIAMBIENTE. (2016). Estudio técnico justificativo para la creación del área protegida humedal Laguna de Matusagaratí. Ministerio de Ambiente.
Mise, F. T., Fugi, R., Pagotto, J. A., & Goulart, E. (2013). The coexistence of endemic species of Astyanax (Teleostei: Characidae) is propitiated by ecomorphological and trophic variations. Biota Neotropica, 13(3), 21-28.
Myers, G. (1949). Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems. Bijdragen tot de Dierkunde, 28, 315-322.
Oksanen, F. J. (2017). Vegan: ecological diversity. R package Ver. 2.4-4. https://cran.r-project.org/package=vegan.
Ospina, J. S., Bedoya-Giraldo, D., & Villa-Navarro, F. A. (2021). Diversidad y estructura de los ensamblajes ícticos en los humedales, caños y esteros de la sabana inundable del río Ariporo, Casanare, Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 45(176), 806-816.
Petry, P., Bayley, P. B., & Markle, D. F. (2003). Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. Journal of Fish Biology, 63, 547-579.
Puerta-Piñero, C., Gullison, R. E., Condit, R., Angermeier, P. L., Ibañez, R., Pérez, R., Douglas R., W., Jansen, P. A., & Roberts, J. H. (2014). Metodologías para el sistema de monitoreo de la diversidad biológica de Panamá. https://repository.si.edu/handle/10088/22142
R CORE TEAM. (2023). R: a language and environments for statistical computing. Ver. 4.3.2. R Foundation for Statistical Computing. http://www.R-project.org/
Reis, R. (1998). Anatomy and phylogenetic analysis of the neotropical callichthyid catfishes (Ostariophysi, Siluriformes). Zoological Journal of the Linnean Society, 124(2), 105-168.
Saint-Paul, U., & Soares, G. (1987). Diurnal distribution and behavioral responses of fishes to extreme hypoxia. Environmental Biology of Fishes, 20(2), 91-104.
Snedden, G. A., Cable, J. E., & Kjerfve, B. (2013). Estuarine geomorphology and coastal hydrology. Estuarine Ecology, 13(1), 19-38.
Valdés-Díaz, S. (2020). Parivivos de la familia Poeciliidae de Panamá. Guía de identificación. Biodiversity Consultant Group.
Vieira, T. B., Pavanelli, C. S., Casatti, L., Smith, W. S., Benedito, E., Mazzoni, R. …Marco, P. D. (2018). A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE, 13(9), 1-17.
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Revista de Biología Tropical