Abstract
Introduction: Dry and humid forests are among the most threatened on the planet in Colombia, they are in Critical Danger, but the status of the transitions is unknown. Objective: To establish the distribution, level of fragmentation, and floristic affinities of the transitional areas between the Tropical Dry Forest (TDF) and Tropical Wet Forest (TWF) in the climatic gradient of the Sinú River basin as a contribution to its conservation management. Methods: The Forest/Non-Forest (B/NB) layer of the study area was at a scale of 1 : 25 000 with Sentinel images (2021-2022) from Planet Scope and other sources, we identified the climatic regions, using climatic data from WorldClim 2.0 (1970-2000) and Giovanni 4.38 (2001-2021), we estimated the level of fragmentation, and we identified floristic affinities from liana sampling and a clustering analysis. Results: The basin has 462 972 ha of forests, 5 % are dry-humid transitional forests, 87 % are humid forests, 6 % are dry forests, and 2 % are mangrove forests. There are more than 1 000 ha of transitional forests in high-extreme fragmentation. The TWF has the lowest fragmentation (little-minimal) and the TDF is the most fragmented. The forested transitions of the basin are more floristically related to TDF. Conclusions: This study contributes to closing the gap in knowledge for determining the distribution patterns of transitional dry-humid tropical forests in the Sinú River basin by applying a replicable integrative methodology. These dry-humid transitional forests should be recognized as another important type of cover for the study of ecological processes under climate change scenarios. It is proposed that dry-humid forests should be included in conservation priorities in the planning and management processes of the territory at different geographic scales and management levels.
References
Acevedo-Quintero, J. F., Zamora-Abrego, J. G., Chica-Vargas, J. P., & Mancera-Rodríguez, N. J. (2023). Rasgos funcionales de frutos con importancia particular para los dispersores de semillas en el bosque seco tropical. Revista de Biología Tropical, 71(1), e52288. https://doi.org/10.15517/rev.biol.trop..v71i1.52288
Acevedo-Rodríguez, P. (2015). Lianas and climbing plants of the Neotropics. Smithsonian Institution. https://naturalhistory.si.edu/research/botany/research/lianas-and-climbing-plants-neotropics
Aguilar-Corrales, D. A., Cabrera-Montenegro, E., Castellanos-Quiroz, H. O., Corredor, L. P., Cruz, A. E., García-Valencia, C., Latorre-Parra, J. P., Martínez-Ardilla, N. J., Martín-Novoa, C. G., Montenegro-Calderón, L., Murcia-García, U. G., Rodríguez-Rondón, J. M., Ramírez-Daza, H. M., Rodríguez-Eraso, N., Rojas-Suárez, A., Romero-Reyes, J. A., Ruiz-Linares, J., Romero-Ruiz, M. H., & Rozo-Garzón, D. M. (2010). Leyenda nacional de coberturas de la tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. Instituto de Hidrología, Meteorología y Estudios Ambientales.
Argel-Fernández, A. J., & Puerta-Avilés, O. (2023). Composición y configuración del paisaje en municipios con bosques remanentes en la franja noroeste de Córdoba y Sucre, Colombia (1985-2020). Estudios Socioterritoriales Revista de Geografía, (33), 123. https://doi.org/10.37838/unicen/est.33-151
Ballesteros-Correa, J., Morelo-García, L., & Pérez-Torres, J. (2019). Composición y estructura vegetal de fragmentos de bosque seco tropical en paisajes de ganadería extensiva bajo manejo silvopastoril y convencional en Córdoba, Colombia. Caldasia, 41(1), 224234. https://doi.org/10.15446/caldasia.v41n1.71320
Banda, K., Delgado-Salinas, A., Dexter, K. G., Linares-Palomino, R., Oliveira-Filho, A., Prado, D., Pullan, M., Quintana, C., Riina, R., Rodríguez, G. M., Weintritt, J., Acevedo-Rodríguez, P., Adarve, J., Álvarez, E., Aranguren B., A., Arteaga, J. C., Aymard, G., Castaño, A., Ceballos-Mago, N., ... & Pennington, R. T. (2016). Plant diversity patterns in Neotropical dry forests and their conservation implications. Science, 353(6306), 13831387. https://doi.org/10.1126/science.aaf5080
Bernal, R., Gradstein, R., & Celis, M. (2016). Catálogo de plantas y líquenes en Colombia. Volumen 1. Universidad Nacional de Colombia. Instituto de Ciencias Naturales.
Blundo, C., Carilla, J., Grau, R., Malizia, A., Malizia, L., Osinaga-Acosta, O., Bird, M., Bradford, M., Catchpole, D., Ford, A., Graham, A., Hilbert, D., Kemp, J., Laurance, S., Laurance, W., Ishida, F. Y., Marshall, A., Waite, C., Woell, H., …& Tran, H. D. (2021). Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biological Conservation, 260, 108849. https://doi.org/10.1016/j.biocon.2020.108849
Corporación Autónoma Regional de los Valles del Sinú y del San Jorge. (2008). Plan de Gestión Ambiental Regional-PGAR. Actual. 008-2019. Corporación Autónoma Regional de los Valles del Sinú y del San Jorge.
Corporación Autónoma Regional de los Valles del Sinú y del San Jorge. (2020). Plan de Acción Institucional 2020-2031. https://cvs.gov.co/download/775/participa/16163/plan-de-accion-institucional-2020-2023-3.pdf
Dexter, K. G., Pennington, R. T., Oliveira-Filho, A. T., Bueno, M. L., Silva de Miranda, P. L., & Neves, D. M. (2018). Inserting tropical dry forests into the discussion on biome transitions in the tropics. Frontiers in Ecology and Evolution, 6, 104. https://doi.org/10.3389/fevo.2018.00104
Esri. (2015). ArcGIS Desktop (Versión 10.4.1.5686) [Computer software]. Environmental Systems Research Institute, Inc.
Etter, A., Andrade, A., Saavedra, K., Amaya, P., & Arevalo, A. (2017). Estado de los ecosistemas colombianos: una aplicación de la metodología de la Lista Roja de Ecosistemas (Vers. 2.0) [Informe técnico]. Pontificia Universidad Javeriana y Conservación Internacional Colombia. https://www.conservation.org.co/media/A7.LRE-Colombia_INFORME%20FINAL_%202017.pdf
Etter, A., McAlpine, C., & Possingham, H. (2008). Historical patterns and drivers of landscape change in Colombia since 1500: A regionalized spatial approach. Annals of the American Association of Geographers, 98(1), 223. https://www.tandfonline.com/doi/abs/10.1080/00045600701733911
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 43024315. https://www.worldclim.org/data/worldclim21.html
Food and Agriculture Organization of the United Nations. (2022). El estado de los bosques del mundo 2022. Vías forestales hacia la recuperación verde y la creación de economías inclusivas, resilientes y sostenibles. FAO. https://doi.org/10.4060/cb9360es
García, H., Corzo, G., Isaac, P., & Etter, A. (2014). Distribución del estado actual de los remanentes del bioma de bosque seco tropical en Colombia: Insumos para su gestión. En C. Pizano, & H. García (Eds.), El bosque seco tropical en Colombia (pp. 228251). Instituto de Investigaciones y Recursos Biológicos Alexander von Humboldt (IAvH). http://repository.humboldt.org.co/handle/20.500.11761/9333
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis (Version 4.0) [Software de cómputo]. Øyvind Hammer.
Hexagon Geospatial. (2015). ERDAS Imagine 2015 (Version 2015) [Software de cómputo]. Hexagon Geospatial.
Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105(2727), 367368. https://www.science.org/doi/10.1126/science.105.2727.367
IBM Corp. (2023). IBM SPSS Statistics for Windows (Version 29.0.2.0.) [Software de cómputo]. IBM Corp. https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-29020
Igu, N. I. (2023). Species Distribution and Patterns in a Forest-savannah Ecotone: Environmental Change and Conservation Concerns. Journal of Botanical Research, 5(3), 2735. https://doi.org/10.30564/jbr.v5i3.5588
Instituto de Hidrología, Meteorología y Estudios Ambientales, & Ministerio de Ambiente y Desarrollo Sostenible. (2022). Actualización de cifras de monitoreo de la superficie de bosque-Año 2021. IDEAM. http://www.ideam.gov.co/documents/11769/126555417/Cifras+de+monitoreo+de+la+superficie+de+bosque+y+la+deforestaci%C3%B3n+2021.pdf/e665b4ef-4f87-467c-b2ad-a09d79a99d56?version=1.0
Kojima, T. (2022). Relationship between forest stand condition and water balance in a forested basin. In F. Li, Y. Awaya, K. Kageyama, & Y. Wei (Eds.), River basin environment: Evaluation, management and conservation (pp. 231–259). Springer. https://doi.org/10.1007/978-981-19-4070-5_11
Landholm, D. M., Pradhan, P., & Kropp, J. P. (2019). Diverging forest land use dynamics induced by armed conflict across the tropics. Global Environmental Change, 56, 8694. https://doi.org/10.1016/j.gloenvcha.2019.03.006
Li, Y., Qin, Y., & Rong, P. (2022). Evolution of potential evapotranspiration and its sensitivity to climate change based on the Thornthwaite, Hargreaves, and Penman-Monteith equation in environmental sensitive areas of China. Atmospheric Research, 273, 106178. https://doi.org/10.1016/j.atmosres.2022.106178
Manrique‐Ascencio, A., Prieto‐Torres, D. A., Villalobos, F., Mercado Gómez, J., & Guevara, R. (2024). Limited drought tolerance in the neotropical seasonally dry forest plants impairs future species richness. Plant Biology. https://doi.org/10.1111/plb.13683
Martínez-Acosta, L., Medrano-Barboza, J. P., López-Ramos, Á., Remolina López, J. F., & López-Lambraño, Á. A. (2020). SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia. Atmosphere, 11(6), 602. https://doi.org/10.3390/atmos11060602
McGarigal, K. (2014). Fragstats 4.2 [Software de cómputo]. https://www.fragstats.org/
McGarigal, K., & Cushman, S. A. (2002). Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecological Applications, 12(2), 335345. https://doi.org/10.1890/1051-0761(2002)012[0335:CEOEAT]2.0.CO;2
McNally, A., & Hydrological Science Laboratory-Goddard Space Flight Center-National Aeronautics and Space Administration. (2018). FLDAS Noah land surface Model L4 global monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [Base de datos]. https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001
Ministerio de Ambiente y Desarrollo Sostenible, & Parques Nacionales Naturales de Colombia. (2012). Resolución 026 del 13 de julio de 2012. https://runap.parquesnacionales.gov.co/area-protegida/691
Ministerio de Ambiente y Desarrollo Sostenible, & Parques Nacionales Naturales de Colombia. (2020). Resolución 045 del 08 de abril de 2020. https://runap.parquesnacionales.gov.co/area-protegida/1687
Mokany, K., Jordan, G. J., Harwood, T. D., Harrison, P. A., Keppel, G., Gilfedder, L., Carter, O., & Ferrier, S. (2016). Past, present and future refugia for Tasmania's palaeoendemic flora. Journal of Biogeography, 44(7), 15371546. https://doi.org/10.1111/jbi.12927
Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17, 6788. https://doi.org/10.1146/annurev.es.17.110186.000435
Ochoa‐Quintero, J. M., Gardner, T. A., Rosa, I., de Barros Ferraz, S. F., & Sutherland, W. J. (2015). Thresholds of species loss in Amazonian deforestation frontier landscapes. Conservation Biology, 29(2), 440451. https://doi.org/10.1111/cobi.12446
Oliveira‐Filho, A. T., & Fontes, M. A. L. (2006). Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica, 32(4b), 793810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x
Palmer, W. C., & Havens, A. V. (1958). A graphical technique for determining evapotranspiration by the Thornthwaite method. Monthly Weather Review, 86(4), 123128.
Peñate-Pacheco, L., Gil-Novoa, J. E., & Carrillo-Fajardo, M. Y. (2022). Diversidad taxonómica y funcional de briófitos en diferentes coberturas de un bosque seco tropical, Córdoba (Colombia). Boletín de la Sociedad Argentina de Botánica, 57(4), 687-704. http://dx.doi.org/10.31055/1851.2372.v57.n4.36922
Pennington, R. T., Prado, D. E., & Pendry, C. A. (2000). Neotropical seasonally dry forests and quaternary vegetation changes. Journal of Biogeography, 27(2), 261273. https://doi.org/10.1046/j.1365-2699.2000.00397.x
Pérez-Torres, J., Vidal-Pastrana, C., & Racero-Casarrubia, J. (Eds.). (2016). Biodiversidad asociada a los sectores Manso y Tigre del Parque Nacional Natural Paramillo. Parques Nacionales Naturales de Colombia, Ministerio de Ambiente y Desarrollo Sostenible.
Pfister, J. L. (2004). Using landscape metrics to create an index of forest fragmentation for the state of Maryland [Tesis doctoral no publicada]. Towson University.
Racero-Casarrubia, J., Ballesteros-Correa, J., & Pérez-Torres, J. (2015). Mamíferos del departamento de Córdoba-Colombia: historia y estado de conservación. Biota Colombiana, 16(2), 128148.
Rangel, O., & Suárez, M. (Eds.). (2022). Memoria técnica del Mapa de la vegetación natural de Colombia (1a Ed.). Ministerio de Ambiente y Desarrollo Sostenible, Colombia.
Ruiz, V. R., & Saab, R. H. P. (2020). Diversidad florística del bosque seco tropical en las subregiones bajo y medio Sinú, Córdoba, Colombia. Revista de Biología Tropical, 68(1), 167179. https://doi.org/10.15517/rbt.v68i1.38286
Sales, L. P., & Pires, M. M. (2023). Identifying climate change refugia for South American biodiversity. Conservation Biology, 37(4), e14087. https://doi.org/10.1111/cobi.14087
Sapena, M., & Ruiz, L. A. (2015). Descripción y cálculo de índices de fragmentación urbana: Herramienta IndiFrag. Revista de Teledetección, 43, 7790. https://doi.org/10.4995/raet.2015.3476
Schindler, S., Poirazidis, K., & Wrbka, T. (2008). Towards a core set of landscape metrics for biodiversity assessments: A case study from Dadia National Park, Greece. Ecological Indicators, 8(5), 502514. https://doi.org/10.1016/j.ecolind.2007.06.001
Schnitzer, S. A. (2018). Testing ecological theory with lianas. New Phytologist, 220(2), 366380. https://doi.org/10.1111/nph.15431
Schnitzer, S. A., Bongers, F., Burnham, R. J., & Putz, F. E. (Eds.). (2014). The ecology of lianas. John Wiley & Sons.
Schnitzer, S. A., Michel, N. L., Powers, J. S., & Robinson, W. D. (2020). Lianas maintain insectivorous bird abundance and diversity in a Neotropical Forest. Ecology, 101(12), e03176. https://doi.org/10.1002/ecy.3176
Suárez-Castaño, R., Rodríguez, C. A., Ramírez-Huertas, M. L., Pabon, W. A., Guerrero, O. J., Zambrano-Fajardo, S. L., Bernal-Forero, C. A., Fajardo-Triana, D. F., Almonacid, I., Escudero-Vasquez, C. Y., & Villalba-Cifuentes, A. (2019). Reporte de alerta subzonas hidrográficas río Sinú y Alto San Jorge SZH-RSASJ [Informe técnico]. Autoridad Nacional de Licencias Ambientales. https://www.anla.gov.co/documentos/biblioteca/27-01-2021-anla-rash-rio-sinu-alto-san-jorge.pdf
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 5594.
Urquhart, G. (2020). The Neotropical Rain-forests. In M. I. Goldstein, & D. A. DellaSala (Eds.), Encyclopedia of the world’s biomes (pp. 56–65). https://doi.org/10.1016/B978-0-12-409548-9.11805-6
Vanegas-Cubillos, M., Sylvester, J., Villarino, E., Pérez-Marulanda, L., Ganzenmüller, R., Löhr, K., Bonatti, M., & Castro-Núñez, A. (2022). Forest cover changes and public policy: A literature review for post-conflict Colombia. Land Use Policy, 114, 105981. https://doi.org/10.1016/j.landusepol.2022.105981
Vogado, N. O., Engert, J. E., Linde, T. L., Campbell, M. J., Laurance, W. F., & Liddell, M. J. (2022). Climate change affects reproductive phenology in lianas of Australia’s wet tropics. Frontiers in Forests and Global Change, 5, 787950. https://doi.org/10.3389/ffgc.2022.787950
Yan, W., Chen, H., Wang, Y., & Chen, C. (2021). The effect of landscape complexity on water quality in mountainous urbanized watersheds: A case study in Chongqing, China. Landscape and Ecological Engineering, 17, 165–193. https://doi.org/10.1007/s11355-021-00448-9
##plugins.facebook.comentarios##

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Revista de Biología Tropical