Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Patterns of microplastic incorporation in larval and pupal cases of Limnephilus hamifer (Trichoptera: Limnephilidae)
PDF
HTML
EPUB

Keywords

freshwater ecosystems; larval and pupal cases; microplastics; PET; Trichoptera.
ecosistemas dulceacuícolas; estuches larvales y pupales; microplásticos; PET; Trichoptera.

How to Cite

Arias-Paco, A., & Springer, M. (2025). Patterns of microplastic incorporation in larval and pupal cases of Limnephilus hamifer (Trichoptera: Limnephilidae). Revista De Biología Tropical, 73(S1), e63696. https://doi.org/10.15517/rev.biol.trop.v73iS1.63696

Abstract

Introduction: Microplastics (MPs) are an omnipresent problem in the environment. However, research on the effects of microplastics on invertebrate organisms in freshwater ecosystems is relatively limited.

Objective: Our aim is to study the patterns of incorporation of MPs by Trichoptera larvae in the Neotropics.

Methods: We collected 30 fourth and fifth instar larvae of Limnephilus hamifer from Cerro de la Muerte, Costa Rica (2 764 m.a.s.l.) and transferred them to the laboratory, where we acclimatized them for 72 hours. We induced the larvae to leave their natural cases and deposited five in each of the following treatments: 100 % MPs, 75 % MPs, 50 % MPs, 25 % MPs and 0 % MPs, where the rest of the percentage corresponded to organic matter from the same collection site. In a sixth treatment, we deposited five larvae with their original cases on a 50 % MPs substrate. The MPs consisted of a proportional mixture of PET of four colors: orange, blue, green and transparent.

Results: We found that larvae from all treatments constructed their cases incorporating MPs, even when organic matter was available. In general, the cases made with MPs had a higher weight than the natural cases and those of the control group. Additionally, we observed that orange-colored MPs were more incorporated into the cases in all treatments, so possibly Trichoptera larvae have preferences towards the orange color. We also observed the incorporation of MPs in larvae with their original cases, and notably, we recorded the incorporation of MPs in pupal cases, something not reported in the literature at the moment. Conclusions: The incorporation of MPs in all treatments has important consequences because they can accumulate toxins that affect the organisms. The fact that MPs cases are heavier than natural ones could mean a problem in the mobility of the larvae on the substrate, which leads to a greater energetic wear. Finally, incorporating MPs into fixed structures such as pupal cases may make them more conspicuous to visual predators such as fish.

https://doi.org/10.15517/rev.biol.trop..v73iS1.63696
PDF
HTML
EPUB

References

Blettler, M. C., Abrial, E., Khan, F. R., Sivri, N., & Espinola, L. A. (2018). Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Research, 143, 416–424. https://doi.org/10.1016/j.watres.2018.06.015

Boyero, L., Rincón, P. A., & Bosch, J. (2006). Case selection by a limnephilid caddisfly [Potamophylax latipennis (Curtis)] in response to different predators. Behavioral Ecology and Sociobiology, 59, 364–372. https://doi.org/10.1007/s00265-005-0059-y

Colegrave, N., & Ruxton, G. D. (2018). Using biological insight and pragmatism when thinking about pseudoreplication. Trends in Ecology & Evolution, 33(1), 28–35. https://doi.org/10.1016/j.tree.2017.10.007

Cormier, B., Gambardella, C., Tato, T., Perdriat, Q., Costa, E., Veclin, C., Le Bihanic, F., Grassl, B., Dubocq, F., Kärrman, A., Van Arkel, K., Lemoine S., Lagarde, F. Morin, B., Garaventa, F., Faimali, M., Cousin, X., Bégout, M.-L., Beiras, R., … Cachot, J. (2021). Chemicals sorbed to environmental microplastics are toxic to early life stages of aquatic organisms. Ecotoxicology and Environmental Safety, 208, 111665. https://doi.org/10.1016/j.ecoenv.2020.111665

Dedual, M., & Collier, K. J. (1995). Aspects of juvenile rainbow trout (Oncorhynchus mykiss) diet in relation to food supply during summer in the lower Tongariro River, New Zealand. New Zealand Journal of Marine and Freshwater Research, 29(3), 381–391. https://doi.org/10.1080/00288330.1995.9516673

Dümichen, E., Barthel, A. K., Braun, U., Bannick, C. G., Brand, K., Jekel, M., & Senz, R. (2015). Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Research, 85, 451–457. https://doi.org/10.1016/j.watres.2015.09.002

Ee-Ling, N. g., Lwanga, E. H., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

Ehlers, S. M., Al Najjar, T., Taupp, T., & Koop, J. H. (2020). PVC and PET microplastics in caddisfly (Lepidostoma basale) cases reduce case stability. Environmental Science and Pollution Research, 27, 22380–22389. https://doi.org/10.1007/s11356-020-08790-5

Ehlers, S. M., Manz, W., & Koop, J. H. (2019). Microplastics of different characteristics are incorporated into the larval cases of the freshwater caddisfly Lepidostoma basale. Aquatic Biology, 28, 67–77. https://doi.org/10.3354/ab00711

Gallitelli, L., Cera, A., Cesarini, G., Pietrelli, L., & Scalici, M. (2021). Preliminary indoor evidences of microplastic effects on freshwater benthic macroinvertebrates. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-020-80606-5

Gasperi, J., Wright, S. L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F. J., & Tassin, B. (2018). Microplastics in air: are we breathing it in? Current Opinion in Environmental Science & Health, 1, 1–5. https://doi.org/10.1016/j.coesh.2017.10.002

Gibb, B. C. (2019). Plastics are forever. Nature Chemistry, 11(5), 394–395. https://doi.org/10.1038/s41557-019-0260-7

Gilbert, C. (1994). Form and function of stemmata in larvae of holometabolous insects. Annual Review of Entomology, 39(1), 323–349. https://doi.org/10.1146/annurev.en.39.010194.001543

Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., & Zeng, E. Y. (2020). A global perspective on microplastics. Journal of Geophysical Research: Oceans, 125(1), e2018JC014719. https://doi.org/10.1029/2018JC014719

He, B., Smith, M., Egodawatta, P., Ayoko, G. A., Rintoul, L., & Goonetilleke, A. (2021). Dispersal and transport of microplastics in river sediments. Environmental Pollution, 279, 116884. https://doi.org/10.1016/j.envpol.2021.116884

Imhof, H. K., Ivleva, N. P., Schmid, J., Niessner, R., & Laforsch, C. (2013). Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology, 23(19), R867–R868. https://doi.org/10.1016/j.cub.2013.09.001

Jiang, C., Yin, L., Li, Z., Wen, X., Luo, X., Hu, S., Yang, H., Long, Y., Deng, B., Huang, L., & Liu, Y. (2019). Microplastic pollution in the rivers of the Tibet Plateau. Environmental Pollution, 249, 91–98. https://doi.org/10.1016/j.envpol.2019.03.022

Kim, S. W., Kim, D., Chae, Y., & An, Y. J. (2018). Dietary uptake, biodistribution, and depuration of microplastics in the freshwater diving beetle Cybister japonicus: effects on predacious behavior. Environmental Pollution, 242, 839–844. https://doi.org/10.1016/j.envpol.2018.07.071

Law, K. L., & Thompson, R. C. (2014). Microplastics in the seas. Science, 345(6193), 144–145. https://doi.org/10.1126/science.1254065

Luchiari, A. C., & Pirhonen, J. (2008). Effects of ambient colour on colour preference and growth of juvenile rainbow trout Oncorhynchus mykiss (Walbaum). Journal of Fish Biology, 72(6), 1504–1514. https://doi.org/10.1111/j.1095-8649.2008.01824.x

Moore, C. J. (2008). Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental research, 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025

Nel, H. A., Dalu, T., & Wasserman, R. J. (2018). Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Science of the Total Environment, 612, 950–956. https://doi.org/10.1016/j.scitotenv.2017.08.298

Pastorino, P., Pizzul, E., Bertoli, M., Anselmi, S., Kušće, M., Menconi, V., Prearo, M., & Renzi, M. (2021). First insights into plastic and microplastic occurrence in biotic and abiotic compartments, and snow from a high-mountain lake (Carnic Alps). Chemosphere, 265, 129121. https://doi.org/10.1016/j.chemosphere.2020.129121

Pope, K. L., Piovia-Scott, J., & Lawler, S. P. (2009). Changes in aquatic insect emergence in response to whole‐lake experimental manipulations of introduced trout. Freshwater Biology, 54(5), 982–993. https://doi.org/10.1111/j.1365-2427.2008.02145.x

Porta, R. (2021). Anthropocene, the plastic age and future perspectives. FEBS Open Bio, 11(4), 948–953. https://doi.org/10.1002/2211-5463.13122

Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza, L. M., Takada, H., Teh, S., & Thompson, R. C. (2013). Classify plastic waste as hazardous. Nature, 494(7436), 169–171. https://doi.org/10.1038/494169a

Shim, W. J., & Thompson, R. C. (2015). Microplastics in the ocean. Archives of Environmental Contamination and Toxicology, 69, 265–268. https://doi.org/10.1007/s00244-015-0216-x

Singh, A. K., & Saxena, K. N. (2004). Attraction of larvae of the armyworm Spodoptera litura (Lepidoptera: Noctuidae) to coloured surfaces. European Journal of Entomology, 101(4), 697–699. https://doi.org/10.14411/eje.2004.092

Springer, M. (2010). Capítulo 7: Trichoptera. Revista de Biología Tropical, 58(S4), 151–198. https://doi.org/10.15517/rbt.v58i4.20086

Springer, M., & Bermúdez, J. (2018). Description of the larva and pupa of Limnephilus hamifer Flint, 1963 (Trichoptera, Limnephilidae) from Costa Rica. Zootaxa 4461(2), 277–285. https://doi.org/10.11646/zootaxa.4461.2.9

Sridharan, S., Kumar, M., Singh, L., Bolan, N. S., & Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: A critical review. Journal of Hazardous Materials, 418, 126245. https://doi.org/10.1016/j.jhazmat.2021.126245

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838–838. https://doi.org/10.1126/science.1094559

Tibbetts, J., Krause, S., Lynch, I., & Sambrook Smith, G. H. (2018). Abundance, distribution, and drivers of microplastic contamination in urban river environments. Water, 10(11), 1597. https://doi.org/10.3390/w10111597

Valentine, K., Cross, R., Cox, R., Woodmancy, G., & Boxall, A. B. (2022). Caddisfly larvae are a driver of plastic litter breakdown and microplastic formation in freshwater environments. Environmental Toxicology and Chemistry, 41(12), 3058–3069. https://doi.org/10.1002/etc.5496

Villegas-Mendoza, J. M., & Rosas-García, N. M. (2013). Visual and gustatory responses of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae to artificial food dyes. Florida Entomologist, 96(3), 1102–1106. https://doi.org/10.1653/024.096.0350

Wang, C., Xing, R., Sun, M., Ling, W., Shi, W., Cui, S., & An, L. (2020). Microplastics profile in a typical urban river in Beijing. Science of The Total Environment, 743, 140708. https://doi.org/10.1016/j.scitotenv.2020.140708

Windsor, F. M., Tilley, R. M., Tyler, C. R., & Ormerod, S. J. (2019). Microplastic ingestion by riverine macroinvertebrates. Science of The Total Environment, 646, 68–74. https://doi.org/10.1016/j.scitotenv.2018.07.271

Zamora‐Muñoz, C., & Svensson, B. O. (1996). Survival of caddis larvae in relation to their case material in a group of temporary and permanent pools. Freshwater Biology, 36(1), 23–31. https://doi.org/10.1046/j.1365-2427.1996.00057.x

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.