Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Preliminary study on the arsenic removal capacity of native Costa Rican microalgae Chlorella vulgaris and Scenedesmus dimorfus (Chlorophyceae)
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

bioremediation; heavy metals; aquatic pollution; green microalgae.
biorremediación; metales pesados; contaminación acuática; microalgas.

How to Cite

Silva-Benavides, A. M., Jiménez-Conejo, N., Solís-Calderón, C., & Arias Barrantes, B. (2025). Preliminary study on the arsenic removal capacity of native Costa Rican microalgae Chlorella vulgaris and Scenedesmus dimorfus (Chlorophyceae). Revista De Biología Tropical, 73(S1), e64045. https://doi.org/10.15517/rev.biol.trop.v73iS1.64045

Abstract

Introduction: The accumulation of heavy metals, such as arsenic, in aquatic ecosystems may lead to significant ecological and health issues, disrupting environmental stability and potential risks to human, plant, and animal health. Phytoremediation, particularly using microalgae as bioremediation, offers a promising approach to address these pollution challenges.

Objective: This study aimed to evaluate the arsenic removal capacity of two green microalgae species, Chlorella vulgaris and Scenedesmus dimorphus.

Methods: Both species were collected from water sources in Vuelta de Kooper ASADA 5, Aguas Zarcas, San Carlos. Initial strains of C. vulgaris and S. dimorphus were grown in BG11 culture medium under controlled light and temperature conditions. The biomass from each culture was resuspended in water samples from the ASADA in Aguas Zarcas (with known Arsenic concentration), and some reagents from the BG11 medium. Experimental treatments were conducted for 8 and 13 days for C. vulgaris, and for 12–13 days for S. dimorphus, with a control treatment. The total chlorophyll concentration, temperature, and pH were monitored.

Results: The results demonstrated a significant capacity for arsenic removal. C. vulgaris obtained an average arsenic removal of 20.51 % after 8 days of treatment and 31.67 % after 13 days. After 13 days of treatment, S. dimorphus showed an average arsenic removal of 47.19 %. According to bioaccumulation, both species exhibited bioaccumulation percentages greater than 97 %.

Conclusion: In conclusion, the arsenic removal and bioaccumulation data have demonstrated the potential of C. vulgaris and S. dimorphus as promising candidates for the phytoremediation of arsenic-contaminated waters.

https://doi.org/10.15517/rev.biol.trop..v73iS1.64045
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Alharbi, R. M., Sholkamy, E. N., Alsamhary, K. I., Abdel-Raouf, N., & Ibraheem, I. B. M. (2023). Optimization study of the capacity of Chlorella vulgaris as a potential bio-remediator for the bio-adsorption of arsenic (III) from aquatic environments. Toxics, 11(5), 439. https://doi.org/10.3390/toxics11050439

Ahmed, S. F., Mofijur, M., Parisa, T. A., Islam, N., Kusumo, F., Inayat, A., Le, V. G., Badruddin, I. A., Khan, T M. Y., & Ong, H. C. (2022). Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere, 286(1), 131656. https://doi.org/10.1016/j.chemosphere.2021.131656

Agilent Technologies. (2011). Manual del usuario ICP-MS serie 7700x [Manual de equipo]. Agilent Technologies. https://www.agilent.com/cs/library/brochures/5990-4025ES.pdf

American Public Health Association, American Water Works Association, & Water Environment Federation. (2023). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.

Arica, M. Y., Tüzün, İ., Yalçın, E., İnce, Ö., & Bayramoğlu, G. (2005). Utilization of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr (VI) ions. Process Biochemistry, 40(7), 2351–2358. https://doi.org/10.1016/j.procbio.2004.09.008

Arias-Barrantes, B. (2020). Determinación de As (III) y As (V) en aguas de consumo humano mediante las técnicas de cromatografía de intercambio aniónico y espectrometría de masas con plasma de acoplamiento inductivo [Tesis de Licenciatura]. Universidad de Costa Rica, Costa Rica.

Arora, N., Gulati, K., Patel, A., Pruthi, P. A., Poluri, K. M., & Pruthi, V. (2017). A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Research, 24, 29–39. https://doi.org/10.1016/j.algal.2017.03.012

Awasthi, S., Chauhan, R., Dwivedi, S., Srivastava, S., Srivastava, S., & Tripathi, R. D. (2018). A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: A promising and feasible approach. Environmental and Experimental Botany, 150, 115–126. https://doi.org/10.1016/j.envexpbot.2018.03.001

Bozeman, J., Koopman, B., & Bitton, G. (1989). Toxicity testing using immobilized algae. Aquatic Toxicology, 14(4), 345–352. https://doi.org/10.1016/0166-445X(89)90032-5

De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611–1627. https://doi.org/10.1016/j.biortech.2009.09.043

De Philippis, R., Colica, G., & Micheletti, E. (2011). Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 92, 697–708. https://doi.org/10.1007/s00253-011-3601-z

García, N. J. M., & Azofeifa, I. V. (2020). Arsénico en suelos y rocas de origen volcánico en un área de Aguas Zarcas y La Palmera, zona norte de Costa Rica. Revista de Ciencia y Tecnología, 36(1), 23–36.

Instituto Costarricense de Acueductos y Alcantarillados. (2016). Informe de parámetros que incumplen con el reglamento para la calidad del agua potable operados por asociación administradoras de acueductos y alcantarillados (ASADAS) 2012-2015 [Informe técnico]. Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Costa Rica.

Instituto Costarricense de Acueductos y Alcantarillados (2017). Informe sobre la Eficiencia de las Plantas de Remoción de Arsénico en Cañas, Bagaces y Los Chiles Periodo 2014-2016 [Informe técnico]. Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Costa Rica.

Jiang, Y., Purchase, D., Jones, H., & Garelick, H. (2011). Effects of arsenate (As5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris. International Journal of Phytoremediation, 13(8), 834–844. https://doi.org/10.1080/15226514.2010.525560

Kalinowska, R., & Pawlik-Skowrońska, B. (2010). Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environmental Pollution, 158(8), 2778–2785. https://doi.org/10.1016/j.envpol.2010.03.003

Kalra, Y. (1998). Handbook of reference methods for plant analysis. Soil and Plant Analysis Council.

Kaplan, G. (2013). Absorption and adsorption of heavy metals by microalgae. In A. Richmond & Q. Hu (Eds.), Handbook of microalgal culture: applied phycology and biotechnology (2nd Ed., pp. 602–611), John Wiley and Sons, Ltd. https://doi.org/10.1002/9781118567166.ch32

Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae–a promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. https://doi.org/10.1016/j.ecoenv.2014.12.019

Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman Jr, C. U., Trakal, L., & Mohan, D. (2019). Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 694, 133427. https://doi.org/10.1016/j.scitotenv.2019.07.233

Leong, Y. K., & Chang, J. S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology, 303, 122886. https://doi.org/10.1016/j.biortech.2020.122886

Lima, S., Villanova, V., Grisafi, F., Caputo, G., Brucato, A., & Scargiali, F. (2020). Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous. Journal of Water Process Engineering, 38, 101647. https://doi.org/10.1016/j.jwpe.2020.101647

Llorente-Mirandes, T., Ruiz-Chancho, M. J., Barbero, M., Rubio, R., & López-Sánchez, J. F. (2010). Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurrence of arsenobetaine. Chemosphere, 81(7), 867–875. https://doi.org/10.1016/j.chemosphere.2010.08.007

Lomax, C., Liu, W. J., Wu, L., Xue, K., Xiong, J., Zhou, J., McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2012). Methylated arsenic species in plants originate from soil microorganisms. New Phytologist, 193(3), 665–672. https://doi.org/10.1111/j.1469-8137.2011.03956.x

Mao, Q., Xie, Z., Irshad, S., Zhong, Z., Liu, T., Pei, F., Gao, B., & Li, L. (2022). Effect of arsenic accumulation on growth and antioxidant defense system of Chlorella thermophila SM01 and Leptolyngbya sp. XZMQ. Algal Research, 66, 102762. https://doi.org/10.1016/j.algal.2022.102762

Monteiro, C. M., Castro, P. M., & Malcata, F. X. (2012). Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnology Progress, 28(2), 299–311. https://doi.org/10.1002/btpr.1504

Montero-Campos, V., Quesada-Kimsey, J., Ledezma-Espinoza, A., & Sandoval-Mora, J. A. (2010). Determinación de arsénico en abastecimientos de agua para consumo humano de la provincia de Cartago, Costa Rica. Acta Médica Costarricense, 52(2), 96–101.

Naja, G., & Volesky, B. (2011). The mechanism of metal cation and anion biosorption. In P. Kotrba, M. Mackova, & T. Macek (Eds.), Microbial biosorption of metals (pp. 19–58). Springer. https://doi.org/10.1007/978-94-007-0443-5_3

Pacheco, M. M., Hoeltz, M., Moraes, M. S., & Schneider, R. C. (2015). Microalgae: cultivation techniques and wastewater phycoremediation. Journal of Environmental Science and Health, Part A, 50(6), 585–601. https://doi.org/10.1080/10934529.2015.994951

Perales-Vela, H. V., Peña-Castro, J. M., & Canizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64(1), 1–10. https://doi.org/10.1016/j.chemosphere.2005.11.024

Podder, M. S., & Majumder, C. B. (2015). Phycoremediation of arsenic from wastewaters by Chlorella pyrenoidosa. Groundwater for Sustainable Development, 1(1–2), 78–91. https://doi.org/10.1016/j.gsd.2015.12.003

Plöhn, M., Spain, O., Sirin, S., Silva, M., Escudero‐Oñate, C., Ferrando‐Climent, L., Allahverdiyeva, Y., & Funk, C. (2021). Wastewater treatment by microalgae. Physiologia Plantarum, 173(2), 568–578. https://doi.org/10.1111/ppl.13427

Qiao, K., Ran, Y., Zhang, L., Liu, X., Sun, Z., Chai, T., Gong, S., & Hu, Z. (2024). Scenedesmus acuminatus as a potential phycoremediator: Enrichment and detoxification of cadmium/lead. Algal Research, 82, 103677. https://doi.org/10.1016/j.algal.2024.103677

Radix, P., Léonard, M., Papantoniou, C., Roman, G., Saouter, E., Gallotti-Schmitt, S., Thiébaud, H., & Vasseur, P. (2000). Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicology and Environmental Safety, 47(2), 186–194. https://doi.org/10.1006/eesa.2000.1966

Rubio, R., Ruiz-Chancho, M. J., & López-Sánchez, J. F. (2010). Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants. TrAC Trends in Analytical Chemistry, 29(1), 53–69. https://doi.org/10.1016/j.trac.2009.10.002

R Core Team. (2024). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/.

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1–61. https://doi.org/10.1099/00221287-111-1-1

Saavedra, R., Muñoz, R., Taboada, M. E., Vega, M., & Bolado, S. (2018). Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresource Technology, 263, 49–57. https://doi.org/10.1016/j.biortech.2018.04.101

Suresh, B., & Ravishankar, G. A. (2004). Phytoremediation—a novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 24(2–3), 97–124. https://doi.org/10.1080/07388550490493627

Touloupakis, E., Faraloni, C., Silva Benavides, A. M., & Torzillo, G. (2021). Recent achievements in microalgal photobiological hydrogen production. Energies, 14(21), 7170. https://doi.org/10.3390/en14217170

Tuzen, M., Sarı, A., Mendil, D., Uluozlu, O. D., Soylak, M., & Dogan, M. (2009). Characterization of biosorption process of As (III) on green algae Ulothrix cylindricum. Journal of Hazardous Materials, 165(1–3), 566–572. https://doi.org/10.1016/j.jhazmat.2008.10.020

Vohra, D. F. (1966). Determination of photosynthetic pigments in sea-water. Monographs Onocéanographie Methodology, 1(13), 1–69.

Wollmann, F., Dietze, S., Ackermann, J. U., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871. https://doi.org/10.1002/elsc.201900071

Xu, P., Tu, X., An, Z., Mi, W., Wan, D., Bi, Y., & Song, G. (2024). Cadmium-induced physiological responses, biosorption and bioaccumulation in Scenedesmus obliquus. Toxics, 12(4), 262. https://doi.org/10.3390/toxics12040262

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.