Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Diversity of moths and butterflies of the southwestern region of Costa Rica
PDF
HTML
EPUB

Supplementary Files

PDF-MS1
DOC-MS1

Keywords

alpha diversity; beta diversity; moth and butterfly distribution; dissimilitude.
diversidad alfa; diversidad beta; distribución de polillas y mariposas; disimilitud.

How to Cite

Chacón, I., Sánchez-Quirós, A. C., & Barrantes, G. (2025). Diversity of moths and butterflies of the southwestern region of Costa Rica. Revista De Biología Tropical, 73(S2), e64530. https://doi.org/10.15517/rev.biol.trop.v73iS2.64530

Abstract

Introduction: The Costa Rican southwestern region is considered one of the neotropical biodiversity hotspots. This geographically isolated forest embraces a rich diversity of moths and butterflies, which is still unknown for the most part.

Objectives: (a) Describe and compare the diversity of moths and butterflies among different localities of the southwestern Costa Rican region, and (b) identify information gaps in this group of insects.

Methods: Data for this study were collected in 12 different localities by parataxonomists and taxonomists for the national inventory of biodiversity led by INBio (National Biodiversity Institute) using different trap types, but relying mainly on light traps. We compared alpha and beta diversity of moths and butterflies among the six localities (Cortés, Piedras Blancas, Rancho Quemado, Agujas, Los Patos, Sirena) with more extensive sampling.

Results: The dataset consisted of 78 747 specimens, of which 2 096 were identified only to the order level. The remaining 76 650 specimens were classified to the family level (n = 48 families), genus, species, or morphospecies. Species and morphospecies were distributed across 37 families. The alpha and beta diversity varied across localities for the 12 families of moths and butterflies that were present in the six localities selected. In general, Piedras Blancas, Rancho Quemado, and Sirena stand out as the most diverse localities. The richness of species varied among different families. For most families Agujas, Los Patos, and Sirena contained more species, but some other families showed a different pattern.

Conclusion: Differences in the diversity of moths and butterflies over a northern-southern gradient likely correspond to species (individuals within species) adapted to different biotic (e.g., availability of host plants and food resources) and abiotic (e.g., microclimatic conditions associated to the complex topography of the region) conditions. Despite the large effort made by INBio in knowing and mapping the biodiversity of Costa Rica, and the economic and biological importance of the biodiversity, there are still a huge number of species to be known, named, and properly used.

https://doi.org/10.15517/rev.biol.trop..v73iS2.64530
PDF
HTML
EPUB

References

Aguirre-Gutiérrez, J., WallisDeVries, M. F., Marshall, L., Zelfde, M., Villalobos-Arámbula, A. R., Boekelo, B., Bartholomeus, H., Franzén, M., & Biesmeijer, J. C. (2017). Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Global Ecology and Biogeography, 26, 1126–1137. https://doi.org/10.1111/geb.12622

Bagley, J. C., & Johnson, J. B. (2014). Phylogeography and biogeography of the lower Central American Neotropics: Diversification between two continents and between two seas. Biological Reviews, 89, 767–790. https://doi.org/10.1111/brv.12076

Barrantes, G. (2009). The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and western Panamá. Revista de Biología Tropical, 57(Suppl. 1), 323–332.

Baselga, A. (2017). Partitioning abundance-based multiple-site dissimilarity into components: Balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution, 8, 799–808.

Binz, H., Schulze, C. H., & Linsenmair, K. E. (2014). Effects of topography on forest butterfly assemblages in the Pacific lowlands of Costa Rica. Ecotropica, 20, 1–14.

Brues, C. T. (1924). The specificity of food-plants in the evolution of phytophagous insects. American Naturalist, 58, 127–144. https://doi.org/10.1086/279965

Burton, P. J., Balisky, A. C., Coward, L. P., Cumming, S. G., & Kneeshaw, D. D. (1992). The value of managing for biodiversity. Forestry Chronicle, 68, 225–237.

Camacho-Sandoval, J., & Duque, H. (2001). Indicators for biodiversity assessment in Costa Rica. Agriculture, Ecosystems & Environment, 87, 141–150.

Chacón, I., & Montero, J. (2007). Butterflies and moths of Costa Rica. INBio.

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67.

Cornejo, X., Mori, S. A., Aguilar, R., Stevens, H., & Douwes, F. (2012). Phytogeography of the trees of the Osa Peninsula, Costa Rica. Brittonia, 64, 76–101. https://doi.org/10.1007/s12228-011-9194-0

Cullen, L., Bodmer, R. E., & Valladares-Pádua, C. (2000). Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biological Conservation, 95, 49–56.

DeVries, P. J. (1987). The butterflies of Costa Rica, Volume I: Papilionidae, Pieridae, Nymphalidae. Princeton University Press.

DeVries, P. J. (1988). Stratification of fruit-feeding nymphalid butterflies in a Costa Rican rainforest. Journal of Research on the Lepidoptera, 26(1-4), 98–108.

Echeverri, A., Smith, J. R., MacArthur-Waltz, D., Lauck, K. S., Anderson, C. B., Monge-Vargas, R., Alvarado-Quesada, I., Wood, S. A., Chaplin-Kramer, R., & Daily, G. C. (2022). Biodiversity and infrastructure interact to drive tourism to and within Costa Rica. Proceedings of the National Academy of Sciences, 119(11), e2107662119.

Eggleton, P. (2020). The state of the world’s insects. Annual Review of Environment and Resources, 45, 61–82.

Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18(4), 586–604.

Enkhtur, K., Brehm, G., Boldgiv, B., & Pfeiffer, M. (2021). Alpha and beta diversity patterns of macro-moths reveal a breakpoint along a latitudinal gradient in Mongolia. Scientific Reports, 11, 15018. https://doi.org/10.1038/s41598-021-94471-3

Erwin, T. L. (1982). Tropical forests: their richness in Coleoptera and other arthropod species. Coleopterists Bulletin, 36, 74–75.

Gao, J. G., Liu, H., Wang, N., Yang, J., & Zhang, X. L. (2020). Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 20. https://doi.org/10.1186/s12870-020-02646-3

Ghazanfar, M., Malik, M. F., Hussain, M., Iqbal, R., & Younas, M. (2016). Butterflies and their contribution in ecosystem: A review. Journal of Entomology and Zoology Studies, 4(2), 115–118.

Gilbert, L. E. (1973). Ecological consequences of a coevolved mutualism between butterflies and plants. In L. E. Gilbert & P. H. Raven (Eds.), Coevolution of animals and plants (pp. 210–240). University of Texas Press.

Gilbert, L. E., Christen, C. A., Altrichter, M., Longino, J. T., Sherman, P. M., Plowes, R., Swartz M. B., Winemiller, K. O., Weghorst, J. A., Vega, A., Phillips, P., Vaughan, C., & Kappelle, M. (2016). The southern pacific lowland evergreen moist forest of the Osa region. In M. Kappelle (Ed.), Costa Rican ecosystems (pp. 360–411. University of Chicago Press.

Gómez, L. D. (1986). Vegetación de Costa Rica. Apunte para una biogeografía costarricense. Universidad Estatal a Distancia.

Haber, W. A., & G. W. Frankie, G. W. (1989). A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica, 21, 155–172.

Haffer, J. (1974). Avian speciation in tropical South America. Nuttall Ornithological Club.

Halder, S., Ghosh, S., Khan, R., Khan, A. A., Perween, T., & Hasan, M. A. (2019). Role of pollination in fruit crops: a review. Pharma Innovation Journal, 8(5), 695–702.

Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 91, 757–775.

Heimonen, K., Lwanga, J. S., Mutanen, M., Nyman, T., & Roininen, H. (2013). Spatial and temporal variation in community composition of herbivorous insects on Neoboutonia macrocalyx in a primary tropical rain forest. Journal of Tropical Ecology. https://doi.org/10.1017/S0266467413000151

Hofhansl, F., Chacon-Madrigal, E., Morera, A., Silla, F., Huber, W., Weissenhofer, A., & Wanek, W. (2019). Diversity and composition of tropical forest plant communities in the Golfo Dulce region. Acta ZooBotanica Austriaca, 156, 31–46.

Holdridge, L. R. (1967). Life zone ecology. San José, Costa Rica: Tropical Science Center.

Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456.

Janzen, D. H. (1983). Insects. In D. H. Janzen (Ed.), Costa Rican natural history (pp. 609–645). University of Chicago Press.

Janzen, D. H., & Hallwachs, W. (2021). To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proceedings of the National Academy of Sciences, 118, e2002546117.

Joyce, A. (2006). Land use change in Costa Rica: 1996–2006, as influenced by social, economic, political, and environmental factors. Litografía e Imprenta LIL, S.A.

Karmalkar, A. V., Bradley, R. S., & Diaz, H. F. (2008). Climate change scenario for Costa Rican montane forests. Geophysical Research Letters, 35. https://doi.org/10.1029/2008GL033940

Lobo, J., Barrantes, G., Castillo, M., Quesada, R., Maldonado, T., Fuchs, E. J., Solís, S., & Quesada, M. (2007). Effects of selective logging on the abundance, regeneration, and short-term survival of Caryocar costarricense (Caryocaceae) and Peltogyne purpurea (Caesalpinaceae), two endemic species to southern Central America. Forest Ecology and Management, 245, 88–95.

Lyra, A., Imbach, P., Rodriguez, D., Chou, S. C., Georgiou, S., & Garofolo, L. (2017). Projections of climate change impacts on Central American tropical rainforest. Climate Change, 141, 93–105. https://doi.org/10.1007/s10584-016-1790-2

Montero, B. K., Gamboa-Barrantes, N., Rojas-Malavasi, G., Cristóbal-Perez, E. J., Barrantes, G., Cascante-Marín, A., Hanson, P., Zumbado, M. A., Madrigal-Brenes, R., Martén-Rodríguez, S., Quesada, M., & Fuchs, E. J. (2024). Pollen metabarcoding reveals a broad diversity of plant sources available to farmland flower visitors near tropical montane forest. Frontiers in Plant Science 15, 1472066. https://doi.org/10.3389/fpls.2024.1472066

Morera-Beita, A., Sanchez, D., Wanek, W., Hofhansl, F., Huber, W., Chacon-Madrigal, E., Montero-Munoz, J. L., & Silla, F. (2019). Beta diversity and oligarchic dominance in the tropical forests of Southern Costa Rica. Biotropica, 51(2), 117–128. https://doi.org/10.1111/btp.12638

Murdoch, W. W., Evans, F. C., & Peterson, C. H. (1972). Diversity and pattern in plants and insects. Ecology, 53, 819–829.

Novotny, V., Miller, S. E., Hulcr, J., Drew, R. A. I., Basset, Y., Janda, M., Setliff, G. P., Darrow, K., Stewart, A. J. A., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, E., Mogia, M., & Weiblen, G. D. (2007). Low beta diversity of herbivorous insects in tropical forests. Nature, 448, 692–695.

Pereira, A. I., & Barrantes, G. 2009. Distribución y densidad de la avifauna de la Península de Osa (1990-1991). Revista Biología Tropical, 57(Suppl. 1), 333–349.

Pievani, T. (2014). The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rendiconti Lincei, 25, 85–93.

R Core Team. (2024). R: A language and environment for statistical computing (Version 4.4.0) [Computer software]. R Foundation for Statistical Computing. Available: https://www.R-project.org/.

Raven, P. H. (1988). Our diminishing tropical forests. In E. O. Wilson (Ed.), Biodiversity (pp. 119–122). National Academy Press.

Sanchez-Azofeifa, G. H. (2000). Land use and cover change in Costa Rica: A geographic perspective. In C. A. S. Hall, C. L. Perez, & G. Leclerc (Eds.), Quantifying sustainable development (pp. 473–501). Academic Press.

Seymoure, B. M. (2018). Enlightening butterfly conservation efforts: The importance of natural lighting for butterfly behavioral ecology and conservation. Insects, 9, 22. https://doi.org/10.3390/insects9010022

Smith, N. J. H., Williams, J. T., Plucknett, D. L., & Talbot, J. P. (1992). Tropical forests and their crops. Cornell University Press.

Stiling, P. (1988). Density-dependent processes and key factors in insect populations. Journal of Animal Ecology, 57(2), 581–593.

Templeton, A. (1989). The meaning of species and speciation: A genetic perspective. In D. Otte & J. A. Endler (Eds.), Speciation and its consequences (pp. 3–27). Sinauer Associates.

Weissenhofer, A., & Huber, W. (2001). Basic geographical and climate features of the Golfo Dulce region. In A. Weber, W. Huber, A. Weissenhofer, N. Zamora, & G. Zimmermann (Eds.), An introductory field guide to the flowering plants of the Golfo Dulce Rain Forests, Costa Rica (pp. 15–24). Oberösterreichisches Landesmuseum.

Wilson, E. O. (1988). The current state of biological diversity. In E. O. Wilson (Ed.), Biodiversity (pp. 3–18). National Academy Press.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.