Abstract
Introduction: Female fecundity in dioecious plants is influenced by ecological factors that affect pollen and pollinator availability. A high flowering synchrony between sexes, an abundance of pollen donors and pollinators are expected to increase female reproductive success.
Objective: To understand how fruit production is related to flowering phenology, sex ratio, abundance and proximity of reproductive males to focal pistillate plants, and pollinator abundance in the dioecious understory palm Chamaedorea pinnatifrons (Arecaceae).
Methods: We followed the population flowering of the study species in a montane forest in Costa Rica during 2012. We correlated the number of fruits and fruit set from 115 inflorescences (74 plants) with the size of male and female neighborhoods surrounding focal plants, as well as with plant size and floral display (number of flowers per inflorescence). We estimated pollinator abundance by sampling thrips (Thysanoptera) from staminate inflorescences throughout the plant reproductive season.
Results: Flowering was seasonal, with a high degree of overlap between the sexes. The sex ratio of reproductive plants did not significantly deviate from one (79 females and 88 males). Female reproductive success was not related to the abundance and proximity of pollen donors but was instead associated with plants possessing shorter stems, more leaves and flowers per inflorescence, and fewer female neighbors. Late-flowering inflorescences significantly produced more fruits and had a higher fruit set, which coincided with an increase in thrips abundance.
Conclusions: We hypothesized that a higher floral display acts as a signal effect to attract pollinators, while larger inflorescences with more flowers can attract more insects, resulting in greater pollination success. Moreover, late-flowering inflorescences seem to benefit from the increase in pollinator abundance at the end of the flowering season. Pollination of C. pinnatifrons and other Chamaedorea species is highly dependent on thrips; as a result, the reproductive success of these palms is susceptible to fluctuations in pollinator population sizes.
References
Ashman, T.-L., Knight, T. M., Steets, J. A., Amarasekare, P., Burd, M., Campbell, D. R., Dudash, M. R., Johnston, M. O., Mazer, S. J., Mitchell, R. J., Morgan, M. T., & Wilson, W. G. (2004). Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology, 85(9), 2408–2421. https://doi.org/10.1890/03-8024
Ataroff, M., & Schwarzkopf, T. (1994). Vegetative growth in Chamaedorea bartlingiana. Principes, 38(1), 24–32.
Augspurger, C. K. (1983). Phenology, flowering synchrony, and fruit set of six neotropical shrubs. Biotropica, 15(4), 257–267. https://doi.org/10.2307/2387650
Bawa, K. S. (1980) Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics 11, 15–39. https://doi.org/10.1146/annurev.es.11.110180.000311
Bawa, K. S. (1994). Pollinators of tropical dioecious angiosperms: A reassessment? No, not yet. American Journal of Botany, 81(4), 456–460. https://doi.org/10.1002/j.1537-2197.1994.tb15470.x
Berry, E. J., & Gorchov, D. L. (2004). Reproductive biology of the dioecious understory palm Chamaedorea radicalis in a Mexican cloud forest: Pollination vector, flowering phenology and female fecundity. Journal of Tropical Ecology, 20(4), 369–376. https://doi.org/10.1017/S0266467404001397
Berry, E. J., & Gorchov, D. L. (2007). Female fecundity is dependent on substrate, rather than male abundance, in the wind‐pollinated, dioecious understory palm Chamaedorea radicalis. Biotropica, 39(2), 186–194. https://doi.org/10.1111/j.1744-7429.2006.00252.x
Bethke, J. A., Dreistadt S. H., & Varela, L. G. (2014). Integrated pest management for home gardeners and landscape professionals. Thrips Statewide Integrated Pest Management Program PEST NOTES Publication 7429. https://ipm.ucanr.edu/legacy_assets/pdf/pestnotes/pnthrips.pdf
Burd, M. (1994). Bateman’s Principle and plant reproduction: The role of pollen limitation in fruit and seed set. Botanical Review, 60(1), 83–139. https://doi.org/10.1007/BF02856594
Carlsson-Graner, U., Elmqvist, T., Agren, J., Gardfjell, H. & Ingvarsson, P. K. (1998). Floral sex ratios, disease and seed set in dioecious Silene dioica. Journal of Ecology, 86(1), 79–91. https://doi.org/10.1046/j.1365-2745.1998.00231.x
Cheplick, G. P. (2005). The Allometry of Reproductive Allocation. In E. G. Reekie & F. A. Bazzaz (Eds.), Reproductive Allocation in Plants (pp. 97–128). Elsevier. https://doi.org/10.1016/B978-012088386-8/50004-1
Dufaÿ, M., & Anstett, M.-C. (2003). Conflicts between plants and pollinators that reproduce within inflorescences: Evolutionary variations on a theme. Oikos, 100(1), 3–14. https://doi.org/10.1034/j.1600-0706.2003.12053.x
Field, D. L., Pickup, M., & Barrett, S. C. (2013). Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations. Annals of Botany, 111(5), 917–923. https://doi.org/10.1093/aob/mct040
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford University Press.
Fuchs, E. J., Lobo, J. A., & Quesada, M. (2003). Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the Tropical dry forest tree Pachira quinata. Conservation Biology, 17(1), 149–157. https://doi.org/10.1046/j.1523-1739.2003.01140.x
Fuchs, E. J., Ross-Ibarra, J., & Barrantes, G. (2010). Reproductive biology of Macleania rupestris (Ericaceae), a pollen-limited Neotropical cloud-forest species in Costa Rica. Journal of Tropical Ecology, 26(3), 351–354. https://doi.org/10.1017/S0266467410000064
Grayum, M. H. (2003). Arecaceae. In B. E. Hammel, M. H. Grayum, C. Herrera, & N. Zamora (Eds.), Manual de Plantas de Costa Rica. Vol. II, Gimnospermas y Monocotiledóneas (Agavaceae-Musaceae) (pp. 201-293). Monographs in Systematic Botany from the Missouri Botanical Garden 92, 201–293.
Henderson, A. (2024). Pollination systems of Palms (Arecaceae). Journal of Pollination Ecology, 35, 144–248. https://doi.org/10.26786/1920-7603(2024)782
Hodel, D. R. (1992). Chamaedorea Palms: The Species and Their Cultivation. Allen Press.
House, S. M. (1992). Population density and fruit set in three dioecious tree species in Australian Tropical Rain Forest. The Journal of Ecology, 80(1), 57. https://doi.org/10.2307/2261063
House, S. M. (1993). Pollination success in a population of dioecious rain forest trees. Oecologia, 96(4), 555–561. https://doi.org/10.1007/BF00320513
IMN (n.d). Datos de Estación Meteorológica Iztarú (No 84181), 2008-2014. Instituto Meteorológico Nacional, Ministerio de Ambiente y Energía de Costa Rica.
Knight, T. M., Steets, J. A., Vamosi, J. C., Mazer, S. J., Burd, M., Campbell, D. R., Dudash, M. R., Johnston, M. O., Mitchell, R. J., & Ashman, T.-L. (2005). Pollen limitation of plant reproduction: Pattern and process. Annual Review of Ecology, Evolution, and Systematics, 3, 467–497. https://doi.org/10.1146/annurev.ecolsys.36.102403.115320
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
Larson, B. M. H. & Barrett, S. C. H. (2000). A comparative analysis of pollen limitation in flowering plants. Biological Journal of the Linnean Society 69, 503–520. https://doi.org/10.1006/bijl.1999.0372
Lee, T. D. (1986). Patterns of fruit and seed production. In J. Lovett Doust & L. Lovett Doust (Eds.), Plant Reproductive Ecology (pp. 179-202). Oxford University Press.
Lewis, T. (1997) Field and laboratory techniques. In Thrips as Crop Pests. CAB International, Wallingford, UK, pp 119-174.
Listabarth, C. (1992). Insect-induced wind pollination of the palm Chamaedorea pinnatifrons and pollination in the related Wendlandiella sp. Biodiversity and Conservation, 1, 39–50. https://doi.org/10.1007/BF00055101
Moog, U., Fiala, B., Federle, W., & Maschwitz, U. (2002). Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia. American Journal of Botany, 89(1), 50–59. https://doi.org/10.3732/ajb.89.1.50
Munguía-Rosas, M. A., Ollerton, J., Parra-Tabla, V., & De-Nova, J. A. (2011). Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecology Letters, 14(5), 511–521. https://doi.org/10.1111/j.1461-0248.2011.01601.x
Obeso, J. R. (2002). The costs of reproduction in plants. New Phytologist, 155(3), 321–348. https://doi.org/10.1046/j.1469-8137.2002.00477.x
Ogle, D. H., Doll, J. C., Wheeler, A. P., & Dinno, A. (2023). FSA: Simple Fisheries Stock Assessment Methods. R package version 0.9.5. https://fishr-core-team.github.io/FSA/
Ollerton, J., & Lack, A. (1998). Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecology, 139, 35–47. https://doi.org/10.1023/A:1009798320049
Orozco-Segovia, A., Batis, A. I., Rojas-Aréchiga, M., & Mendoza, A. (2003). Seed biology of palms: A review. Palms, 47(2), 79–94.
Öster, M., & Eriksson, O. (2007). Sex ratio mediated pollen limitation in the dioecious herb Antennaria dioica. Ecoscience, 14 (3), 387–398. https://doi.org/10.2980/1195-6860(2007)14[387:SRMPLI]2.0.CO;2
Otero-Arnaiz, A., & Oyama, K. (2001). Reproductive phenology, seed-set and pollination in Chamaedorea alternans, an understory dioecious palm in a rain forest in Mexico. Journal of Tropical Ecology, 17(5), 745–754. https://doi.org/10.1017/S0266467401001559
Oyama, K. (1990). Variation in growth and reproduction in the neotropical dioecious palm Chamaedorea tepejilote. The Journal of Ecology, 78(3), 648-663. https://doi.org/10.2307/2260890
Pires, J. P. D. A., Silva, A. G., & Freitas, L. (2013). Plant size, flowering synchrony and edge effects: What, how and where they affect the reproductive success of a Neotropical tree species. Austral Ecology, 39(3), 328–336. https://doi.org/10.1111/aec.12082
Porter Morgan, H. (2007). Thrips as Primary Pollinators of Sympatric Species of Chamaedorea (Arecaceae) in Belize [Ph. D. dissertation. The City University of New York].
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Renner, S. S., & Feil, J. P. (1993). Pollination of tropical dioecious angiosperms. American Journal of Botany, 80(9), 1100–1107. https://doi.org/10.2307/2445424
Retana-Salazar, A. P., & Mound, L. A. (2005). Character state variation in a new genus and species of Thripidae (Insecta: Thysanoptera) associated with Chamaedorea (Arecaceae) inflorescences in Central America. Brenesia, 63–64, 121–126.
Ríos, L. D., Fuchs, E. J., Hodel, D. R., & Cascante‐Marín, A. (2014). Neither insects nor wind: Ambophily in dioecious Chamaedorea palms (Arecaceae). Plant Biology, 16(4), 702–710. https://doi.org/10.1111/plb.12119
Sakai, S. (2001). Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. American Journal of Botany, 88(9), 1527–1534. https://doi.org/10.2307/3558396
Sánchez, J., Durán, F., & Vega, G. (2008). Diversidad de plantas, mamíferos y mariposas en los Cerros de la Carpintera, Costa Rica. Reporte interno. Departamento de Historia Natural, Museo Nacional de Costa Rica.
Schiestl, F. P. (2015). Ecology and evolution of floral volatile‐mediated information transfer in plants. New Phytologist, 206(2), 571–577. https://doi.org/10.1111/nph.13243
Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51(3), 408–418. https://doi.org/10.2307/1935376
Shelton, A. O. (2008). Skewed sex ratios, pollen limitation, and reproductive failure in the dioecious seagrass Phyllospadix. Ecology, 89(11), 3020–3029. https://doi.org/10.1890/07-1835.1
Steven, J.C., & Waller, D.M. (2007). Isolation affects reproductive success in low-density but not high-density populations of two wind-pollinated Thalictrum species. Plant Ecology, 190, 131–141. https://doi.org/10.1007/s11258-006-9196-2
Voigt, F. A., Jung, S., Farwig, N., & Böhning-Gaese, K. (2005). Low fruit set in a dioecious tree: Pollination ecology of Commiphora harveyi in South Africa. Journal of Tropical Ecology, 21(2), 179–188. https://doi.org/10.1017/S026646740400210X
Wenk, E. H., & Falster, D. S. (2015). Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution, 5(23), 5521–5538. https://doi.org/10.1002/ece3.1802
Wyatt, R. (1982). Inflorescence architecture: How flower number, arrangement, and phenology affect pollination and fruit-set. American Journal of Botany, 69(4), 585–594.
Zerega, N. J. C., Mound, L. A., & Weiblen, G. D. (2004). Pollination in the New Guinea endemic Antiaropsis decipiens (Moraceae) is mediated by a new species of thrips, Thrips antiaropsidis sp. nov. (Thysanoptera: Thripidae). International Journal of Plant Sciences, 165(6), 1017–1026. https://doi.org/10.1086/423869
Zuur, A. F., Leno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer Science+Business Media.
##plugins.facebook.comentarios##

This work is licensed under a Creative Commons Attribution 4.0 International License.