Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Yeast diversity in tropical fruits from Costa Rica
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

levaduras tropicales, biodiversidad, frutas tropicales, biotecnología.
Tropical yeast, biodiversity, tropical fruits, tropical fruits, biotechnology.

How to Cite

Rojas-Jiménez, K., Quirós-Castegnaro, A., Ramirez-Rodríguez, I., Solera-Rodríguez, P., Morera-Huertas, J., & Vallejo-Arróliga, M. (2025). Yeast diversity in tropical fruits from Costa Rica. Revista De Biología Tropical, 73(S2), e64703. https://doi.org/10.15517/rev.biol.trop.v73iS2.64703

Abstract

Introduction: The yeasts consumed by the population in foods such as tropical fruits remain relatively unknown, despite being an important component of the human microbiota and having multiple biotechnological applications.

Methods: In this work we isolated and characterized the diversity of yeasts in fruits regularly ingested in Costa Rica, using culture-dependent methods, morphological characterization, and ITS marker sequencing.

Results: We isolated 118 yeasts from the 26 species of tropical fruits sampled, grouped into 7 families, 11 genera, and 19 species. Hanseniaspora pseudoguilliermondii, Pichia kluyveri and Hanseniaspora uvarum were the most abundant species. Notably, some species were present on several fruits, others presented a more specific host range, and some were only isolated after several months of fermentation.

Conclusion: Our work evidences the large diversity of yeasts present in tropical fruits, which motivates further study of their ecology, physiology, and potential biotechnological uses.

Keywords

https://doi.org/10.15517/rev.biol.trop..v73iS2.64703
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Abdel-Banat, B. M., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?. Applied Microbiology and Biotechnology, 85, 861–867

Amorim, J. C., Piccoli, R. H., & Duarte, W. F. (2018). Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Research International, 107, 518–527.

Balarezo-Cisneros, L. N., Timouma, S., Hanak, A., Currin, A., Valle, F., & Delneri, D. (2023). High quality de novo genome assembly of the non-conventional yeast Kazachstania bulderi describes a potential low pH production host for biorefineries. Communications Biology, 6(1), 918.

Barnett, J. A. (2004). A history of research on yeasts 8: taxonomy. Yeast, 21(14), 1141–1193.

Basit, A., Miao, T., Liu, J., Wen, J., Song, L., Zheng, F., Lou, H., & Jiang, W. (2019). Highly efficient degradation of xylan into xylose by a single enzyme. ACS Sustainable Chemistry & Engineering, 7(13), 11360–11368.

Bedolla-Torres, M. H., Palacios-Espinosa, A., Palacios, O. A., Choix, F. J., Ascencio-Valle, F., López-Aguilar, D. R., Espinoza-Villavicencio, J. L., de Luna de la Peña, R., Guillen-Trujillo, A., Avila-Serrano, N. Y., & Ortega-Pérez, R. (2015). La irrigación con levaduras incrementa el contenido nutricional del forraje verde hidropónico de maíz. Revista Argentina de Microbiología, 47(3), 236–244.

Boekhout, T., Amend, A. S., El Baidouri, F., Gabaldón, T., Geml, J., Mittelbach, M., Robert, V., Tan, C. S., Turchetti, B., Vu, D., Wang, Q. M., & Yurkov, A. (2022). Trends in Yeast Diversity Discovery. Fungal Diversity, 114(1), 491–537.

Botstein, D., Chervitz, S. A., & Cherry, M. (1997). Yeast as a Model Organism. Science, 277(5330), 1259–1260.

Bourbon-Melo, N., Palma, M., Rocha, M. P., Ferreira, A., Bronze, M. R., Elias, H., & Sá-Correia, I. (2021). Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food microbiology, 95, 103678.

Caruffo, M., Navarrete, N., Salgado, O., Díaz, A., López, P., García, K., Feijóo, C. G., & Navarrete, P. (2015). Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio) from a Vibrio anguillarum challenge. Frontiers in Microbiology, 6, 1093.

Cardoso, B. S., & Forte, M. B. S. (2021). Purification of biotechnological xylitol from Candida tropicalis fermentation using activated carbon in fixed-bed adsorption columns with continuous feed. Food and Bioproducts Processing, 126, 73–80.

Dasilva, E., Borges, M., Medina, C., Piccoli, R., & Schwan, R. (2005). Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Research, 5(9), 859–865.

Deák, T. & Péter, G. (2013). Developments in yeast taxonomy. Acta Alimentaria, 42(1), 55–68.

Druvefors, U. A., Passoth, V., & Schnürer, J. (2005). Nutrient Effects on Biocontrol of Penicillium roqueforti by Pichia anomala J121 during Airtight Storage of Wheat. Applied and Environmental Microbiology, 71(4), 1865–1869.

Elyasi-Far, B., Sajadi, F., Nazemiyeh, H., Mehdizadeh Aghdam, E., & Dilmaghani, A. (2023). Study of Hydrolytic Enzymes Activity and Stability of the Isolated Yeast Close to Zygoascus hellenicus. Current Biotechnology, 12(2), 118–123.

Englezos, V., Di Gianvito, P., Peyer, L., Giacosa, S., Río Segade, S., Edwards, N., Rolle, L., Rantsiou, K., & Cocolin, L. (2022). Bioprotective effect of Pichia kluyveri and Lactiplantibacillus plantarum in winemaking conditions. American Journal of Enology and Viticulture, 73(4), 294–307.

Fai, A. E. C., da Silva, J. B., de Andrade, C. J., Bution, M. L., & Pastore, G. M. (2014). Production of prebiotic galactooligosaccharides from lactose by Pseudozyma tsukubaensis and Pichia kluyveri. Biocatalysis and Agricultural Biotechnology, 3(4), 343–350.

Ganapathiwar, S., & Bhukya, B. (2023). In vitro assessment for the probiotic potential of Pichia kudriavzevii. Bioinformation, 19(4), 441.

Ganter, P. F., Morais, P. B., & Rosa, C. A. (2017). Yeasts in Cacti and Tropical Fruit. In P. Buzzini, M. A. Lachane, & A. Yurkov (Eds.), Yeasts in natural ecosystems: diversity (pp. 331–365). Springer International Publishing.

Geijer, C., Ledesma-Amaro, R., & Tomás-Pejó, E. (2022). Unraveling the potential of non-conventional yeasts in biotechnology. FEMS Yeast Research, 22(1), foab071.

Gimenes, D. C., Ono, M. A., de Souza Suguiura, I. M., Macagnan, R., Sartori, D., Pelegrinelli-Fungaro, M. H., Furlaneto, M. C., & Sataque-Ono, E. Y. (2023). Aspergillus ochraceus biocontrol by Hanseniaspora opuntiae in vitro and on coffee fruits. Food Research International, 173, 113388.

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., & Oliver, S. G. (1996). Life with 6000 Genes. Science, 274(5287), 546–567.

Gouliamova, D., Dimitrov, R., Petrova, P., Stoyancheva, G., & Petrov, K. (2009). Genomic Approaches to Yeast Taxonomy. Biotechnology & Biotechnological Equipment, 23, 519–523.

Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology, 52(5), 696–704.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41(41), 95–98.

Isia, I., Hadibarata, T., Sari, A. A., Al Farraj, D. A., Elshikh, M. S., & Al Khulaifi, M. M. (2019). Potential use of a pathogenic yeast Pichia kluyveri FM012 for degradation of dichlorodiphenyltrichloroethane (DDT). Water, Air, & Soil Pollution, 230, 1–11.

Johnson, E. A., & Echavarri-Erasun, C. (2011). Yeast biotechnology. In C. P. Kurtzman, J. W. Fell, T. Boekhout (Eds.), The Yeasts (pp. 21–44). Elsevier.

Kieliszek, M., Kot, A. M., Bzducha-Wróbel, A., Błażejak, S., Gientka, I., & Kurcz, A. (2017). Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biology Reviews, 31(4), 185–198.

Kim, J. H., Kim, K., Kanjanasuntree, R., & Kim, W. (2019). Kazachstania turicensis CAU Y1706 ameliorates atopic dermatitis by regulation of the gut–skin axis. Journal of Dairy Science, 102(4), 2854–2862.

Kumar, S., Stecher, G. Li. M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

Kurtzman, C. P. (1994). Molecular taxonomy of the yeasts. Yeast, 10 (13), 1727–1740.

Kurtzman, C. P. (2011a). Starmera Y. Yamada, Higashi, Ando & Mikata (1997). In C. P. Kurtzman, J. W. Fell, T. Boekhout (Eds.), The Yeasts (pp. 805–810). Elsevier.

Kurtzman, C. P. (2011b). Saturnispora Liu & Kurtzman (1991). In C. P. Kurtzman, J. W. Fell, T. Boekhout (Eds.), The Yeasts (pp. 387–390). Elsevier.

Kurtzman, C. P. & Piškur, J. (2006). Taxonomy and phylogenetic diversity among the yeasts Comparative. In P. Sunnerhagen & J. Piskur (Eds.), Genomics: Using Fungi as Models (pp. 29–46). Springer.

Kurtzman, C. P., Fell, J. W., & Boekhout, T. (2011). Definition, Classification and Nomenclature of the Yeasts. In C. P. Kurtzman, J. W. Fell, T. Boekhout (Eds.), The Yeasts (pp. 3–5). Elsevier.

Lachance, M. A., & Bowles, J. M. (2004). Metschnikowia similis sp. nov. and Metschnikowia colocasiae sp. nov., two ascomycetous yeasts isolated from Conotelus spp. (Coleoptera: Nitidulidae) in Costa Rica. Studies in Mycology, 50, 69–76.

Lachance, M. A., Klemens, J. A., Bowles, J. M., & Janzen, D. H. (2001). The yeast community of sap fluxes of Costa Rican Maclura (Chlorophora) tinctoria and description of two new yeast species, Candida galis and Candida ortonii. FEMS Yeast Research, 1(2), 87–92.

Liu, S., Zhang, Q., Xiang, Q., Duan, L., Pei, Z., & Li, Y. (2022). Hanseniaspora pseudoguilliermondii improves the flavor of tilapia fish protein hydrolysates. Journal of Aquatic Food Product Technology, 31(4), 297–310.

López, S., Mateo, J. J., & Maicas, S. (2014). Characterisation of Hanseniaspora isolates with potential aroma-enhancing properties in Muscat wines. South African Journal of Enology and Viticulture, 35(2), 292–303.

Lorenzetti, E., Carvalho, J. C., Alves Neto, A. J., Hendges, C., Kohler, T. R., da Mata, T. C., Alves da Silva, J. C., Costa Brito, O. D., Faria, V. de O., Feroldi, L. T., Hoepers, L. M. L., & Kuhn, O. J. (2020). Induction of Phytoalexins Gliceoline and Proteins Related to Defense in Soybean Cotyledon Treated With Yeast. Journal of Agricultural Science, 12(12), 156–162.

Lorenzini, M., Simonato, B., & Zapparoli, G. (2018). Yeast species diversity in apple juice for cider production evidenced by culture-based methods. Folia microbiologica, 63, 677–684

Lu, X., Lin, J., Wang, C., Du, X., & Cai, J. (2016). Purification and characterization of exo-polygalacturonase from Zygoascus hellenicus V25 and its potential application in fruit juice clarification. Food science and biotechnology, 25, 1379–1385.

Madrigal, T., Maicas, S., & Tolosa, J. J. M. (2013). Glucose and ethanol tolerant enzymes produced by Pichia (Wickerhamomyces) isolates from enological ecosystems. American journal of enology and viticulture, 64(1), 126–133.

Manzanares, P., Ramón, D., & Querol, A. (1999). Screening of non-Saccharomyces wine yeasts for the production of β-D-xylosidase activity. International journal of food microbiology, 46(2), 105112

Morais, P., Teixeira, L., Bowles, J., Lachance, M., & Rosa, C. (2004). Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. FEMS Yeast Research, 5(1), 81–85.

Nisiotou, A. A., & Nychas, G.J. E. (2008). Kazachstania hellenica sp. nov., a novel ascomycetous yeast from a Botrytis-affected grape must fermentation. International Journal of Systematic and Evolutionary Micorbiology, 58(5), 1263–1267.

Penn, O., Privman, E., Ashkenazy, H., Landan, G., Graur, D., & Pupko, T. (2010). GUIDANCE: a web server for assessing alignment confidence scores. Nucleic acids research, 38, W23–W28.

Pinto, M. I. S., Campos Guerra, J. M., Meira, H. M., Sarubbo, L. A., & de Luna, J. M. (2022). A biosurfactant from Candida bombicola: its synthesis, characterization, and its application as a food emulsions. Foods, 11(4), 561.

Pongcharoen, P., Chawneua, J., & Tawong, W. (2018). High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agriculture and Natural Resources, 52(6), 511–518.

Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One, 5(3), e9490.

Qvirist, L., Vorontsov, E., Veide Vilg, J., & Andlid, T. (2017). Strain improvement of Pichia kudriavzevii TY13 for raised phytase production and reduced phosphate repression. Microbial biotechnology, 10(2), 341–353.

Ramírez-Castrillón, M., Usman, L. M., Silva-Bedoya, L. M., & Osorio-Cadavid, E. (2019). Dominant yeasts associated to mango (Mangifera indica) and rose apple (Syzygium malaccense) fruit pulps investigated by culture-based methods. Anais da Academia Brasileira de Ciências, 91(04), e20190052.

Ramos, J., Melero, Y., Ramos-Moreno, L., Michán, C., & Cabezas, L. (2017). Debaryomyces hansenii strains from valle de los pedroches iberian dry meat products: Isolation, identification, characterization, and selection for starter cultures. Journal of Microbiology and Biotechnology, 27(9), 1576–1585.

Rao, R. S., Bhadra, B., & Shivaji, S. (2008). Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Letters in Applied Microbiology, 47(1), 19–24.

Reyns, K. M., Soontjens, C. C., Cornelis, K., Weemaes, C. A., Hendrickx, M. E., & Michiels, C. W. (2000). Kinetic analysis and modelling of combined high-pressure–temperature inactivation of the yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 56(2–3), 199–210.

Rojas-Jimenez, K., Grossart, H. P., Cordes, E., & Cortés, J. (2020). Fungal communities in sediments along a depth gradient in the Eastern Tropical Pacific. Frontiers in microbiology, 11, 575207.

Sabel, A., Martens, S., Petri, A., König, H., & Claus, H. (2014). Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Annals of Microbiology, 64, 483–491.

Shrivastava, A., Pal, M., & Sharma, R. K. (2023). Pichia as yeast cell factory for production of industrially important bio-products: Current trends, challenges, and future prospects. Journal of Bioresources and Bioproducts, 8(2), 108–124.

Sperandio, E. M., Reis, J. B. A. D., Coelho, L. G. F., & Vale, H. M. M. D. (2023). Occurrence and diversity of yeast associated with fruits and leaves of two native plants from Brazilian neotropical savanna. Diversity, 15(9), 1010.

Starmer, W. T., & Lachance, M.A. (2011). Yeast Ecology. In C. P. Kurtzman, J. W. Fell, T. Boekhout (Eds.), The Yeasts (pp. 65–83). Elsevier.

Tejero, P., Martín, A., Rodríguez, A., Galván, A. I., Ruiz-Moyano, S., & Hernández, A. (2021). In vitro biological control of Aspergillus flavus by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793, producers of antifungal volatile organic compounds. Toxins, 13(9), 663.

Trindade, R. C., Resende, M. A., Silva, C. M., & Rosa, C. A. (2002). Yeasts Associated with Fresh and Frozen Pulps of Brazilian Tropical Fruits. Systematic and Applied Microbiology, 25(2), 294–300.

Tullio, V. (2022). Yeast genomics and its applications in biotechnological processes: what is our present and near future? Journal of Fungi, 8(7), 752.

Urubschurov, V., Büsing, K., Souffrant, W. B., Schauer, N., & Zeyner, A. (2018). Porcine intestinal yeast species, Kazachstania slooffiae, a new potential protein source with favourable amino acid composition for animals. Journal of Animal Physiology and Animal Nutrition, 102(2), e892-e901.

Vadkertiová, R., Molnárová, J., Vránová, D., & Sláviková, E. (2012). Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Canadian Journal of Microbiology, 58(12), 1344–1352.

Vale, H. M. M. D., Reis, J. B. A. D., Oliveira, M. D., Moreira, G. A. M., & Bomfim, C. A. (2021). Yeasts in native fruits from Brazilian neotropical savannah: occurrence, diversity and enzymatic potential. Biota Neotropica, 21(4), e20201184.

Van Wyk, N., Badura, J., von Wallbrunn, C., & Pretorius, I. S. (2024). Exploring future applications of the apiculate yeast Hanseniaspora. Critical Reviews in Biotechnology, 44(1), 100–119.

Vicente, J., Calderón, F., Santos, A., Marquina, D., & Benito, S. (2021). High potential of Pichia kluyveri and other Pichia species in wine technology. International Journal of Molecular Sciences, 22(3), 1196.

White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). Academic Press, Inc.

Xie, G., Wang, L., Gao, Q., Yu, W., Hong, X., Zhao, L., & Zou, H. (2013). Microbial community structure in fermentation process of Shaoxing rice wine by Illumina‐based metagenomic sequencing. Journal of the Science of Food and Agriculture, 93(12), 3121–3125.

Zhang, H., Zhao, Z., Kang, P., Wang, Y., Feng, J., Jia, J., & Zhang, Z. (2018). Biological nitrogen removal and metabolic characteristics of a novel aerobic denitrifying fungus Hanseniaspora uvarum strain KPL108. Bioresource technology, 267, 569–577.

Zhao, H., Li, Y., Liu, L., Zheng, M., Feng, Z., Hu, K., & Tao, Y. (2022). Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Food Research International, 159, 111604.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.