Frames with Intentionally Eccentric W-Shape, C-Shape, and Round HSS Braces

Authors

DOI:

https://doi.org/10.15517/

Keywords:

Braces with Intentional Eccentricity (BIEs), earthquake-resistant design, Frames with Intentionally Eccentric Braces (FIEBs), Non- Linear Response History Analysis (NLRHA), steel braced frames

Abstract

Steel Frames with Intentionally Eccentric Braces (FIEBs) are an innovative Seismic Force-Resisting
System (SFRS) that offers significant advantages compared to Concentrically Braced Frames (CBFs).
Recent research has shown that the adjustable stiffness and strength of Braces with Intentional
Eccentricity (BIEs) with square Hollow Structural Section (HSS) bracing members allows for a better
control over the structure’s dynamic response and for a reduction of the capacity-based design forces on
the non-energy-dissipating members.
In this article, the aptness of W-shapes, C-shapes, and round HSSs to be employed as bracing
members in multi-story FIEBs is evaluated preliminarily. To this end, hypothetical buildings with FIEBs
based on the three section types as their SFRS are designed using a displacement-based procedure for
the seismic hazard of locations in Costa Rica, and their performance is assessed numerically with Non-
Linear Response History Analysis (NLRHA).
The results show that the three section types produce FIEBs that display a satisfactory seismic
response in terms of maximum story drifts and story shears, and that the use of W-shape BIEs results in
the most cost-effective designs.

References

[1] K. A. Skalomenos, H. Inamasu, H. Shimada, and M. Nakashima, “Development of a Steel Brace with Intentional Eccentricity and Experimental Validation,” Journal of Structural Engineering, vol. 143, no. 8, p. 04017072, Aug. 2017, doi: 10.1061/(asce)st.1943-541x.0001809.

[2] A. González Ureña, R. Tremblay, and C. A. Rogers, “Experimental and numerical study of square HSS BIEs under cyclic loading,” Eng. Struct., vol. 252, p. 113669, Feb. 2022, doi: 10.1016/j.engstruct.2021.113669.

[3] A. González Ureña, R. Tremblay, and C. A. Rogers, “Earthquake-resistant design of steel frames with intentionally eccentric braces,” J. Constr. Steel Res., vol. 178, p. 106483, Mar. 2021, doi: 10.1016/j.jcsr.2020.106483.

[4] A. González Ureña, R. Tremblay, and C. A. Rogers, “Design and performance of Frames with Intentionally Eccentric Braces,” in 17th World Conference on Earthquake Engineering, Sendai, 2020.

[5] D. Martínez Vargas, “Diseño sismorresistente de marcos de acero con riostras intencionalmente excéntricas de sección W,” B.S. thesis, Escuela de Ingeniería Civil, Universidad de Costa Rica, San José, Costa Rica, 2024.

[6] W. M. Guerrero Angulo, “Análisis numérico del comportamiento mecánico de riostras intencionalmente excéntricas con sección de acero estructural tipo C en sistemas de marcos sismorresistentes,” B.S. thesis, Escuela de Ingeniería Civil, Universidad de Costa Rica, San José,

Costa Rica, 2024.

[7] M. J. Zamora Durán, “Diseño y estudio del desempeño sísmico de marcos de acero con riostras intencionalmente excéntricas con HSS circular,” B.S. thesis, Escuela de Ingeniería Civil, Universidad de Costa Rica, San José, Costa Rica, 2024.

[8] M. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky, Displacement-based seismic design of structures. Pavia, Italy: IUSS Press, 2007.

[9] Colegio Federado de Ingenieros y de Arquitectos de Costa Rica, Código Sísmico de Costa Rica 2010. Revisión 2014, Cartago, Costa Rica: Editorial Tecnológica de Costa Rica, 2014.

[10] Standard Specification for Structural Steel Shapes, ASTM A992/A992M-22, ASTM International, Sept. 2022.

[11] Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/ A572M-21, ASTM International, Apr. 2017.

[12] F. McKenna, M. H. Scott, and G. L. Fenves, “Nonlinear Finite-Element Analysis Software Architecture Using Object Composition,” Journal of Computing in Civil Engineering, vol. 24, no. 1, pp. 95-107, 2010, doi: 10.1061/ ASCECP.1943-5487.0000002.

[13] Steel Construction Manual, 16th ed., American Institute for Steel Construction (AISC), Chicago, IL, USA, 2022.

[14] Seismic Provisions for Structural Steel Buildings, ANSI/ AISC 341-22, American Institute of Steel Construction (AISC), Sep. 2022.

[15] Standard Specification for Cold-Formed Welded Carbon Steel Hollow Structural Sections (HSS), ASTM A1085/ A1085M-22, ASTM International, Dec. 2022.

[16] Standard Specification for Carbon Structural Steel, ASTM A36/A36M-19, ASTM International, Jul. 2019.

[17] Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-22, American Society of Civil Engineers (ASCE) and Structural Engineering Institute (SEI), Mar. 2022.

[18] Canadian Commission on Building and Fire Codes, National Building Code of Canada 2020. Ottawa, Canada: National Research Council of Canada, 2020.

[19] Specification for Structural Steel Buildings, ANSI/AISC 360-22, American Institute of Steel Construction (AISC), Aug. 2022.

[20] D. A. Hidalgo-Leiva et al., “The 2022 Seismic Hazard Model for Costa Rica,” Bulletin of the Seismological Society of America, vol. 113, no. 1, pp. 23-40, Dec. 2022, doi: 10.1785/0120220119.

[21] D. Hidalgo Leiva et al., Actualización de la Amenaza Sísmica para Costa Rica. San José, Costa Rica: Proyecto UCREA, 2021.

[22] T. D. Ancheta et al., “PEER NGA-West2 Database.” May 2, 2013. Distributed by Pacific Earthquake Engineering Research Center. https://peer.berkeley.edu/sites/default/files/2013_03_ancheta_7.3.2020.pdf

[23] K-NET, KiK-net, National Research Institute for Earth Science and Disaster Resilience, Nov. 2023. [Online]. Available: https://www.kyoshin.bosai.go.jp/

[24] J. McCormick, H. Aburano, M. Ikenaga, and M. Nakashima, “Permissible residual deformation levels for building structures considering both safety and human elements,” in The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.

Published

2025-07-09