Resumen
Este trabajo presenta los resultados de un proceso exploratorio donde se aplicaron diferentes métodos de clasificación para determinar el modo de transporte de los estudiantes para acceder a la sede Rodrigo Facio de la Universidad de Costa Rica. Dentro de los modelos analizados se encuentran la regresión logística binomial, análisis discriminante lineal, árboles de decisión, K-vecinos más cercanos, máquinas de soporte vectorial y redes neuronales. Se realizó una validación con el método de K-pliegues y se obtuvo una precisión superior al 83% para todos los modelos analizados. De manera similar, se aplicó el modelo de ensamble apilamiento para las técnicas de árboles de decisión, K-vecinos más cercanos, máquinas de soporte vectorial, bosques aleatorios, agregación de Bootstrap, regresión logística binomial y método de potenciación obteniendo valores de precisión superiores al 86% en todos los casos, siendo el modelo de bosques aleatorios el que presentó una mayor precisión.
Citas
Alpízar, F., Piaggio, M., y Pacay, E. (2017). Valoración económica de los beneficios en la salud asociados a la reducción de la contaminación del aire. Santiago, Chile: CEPAL.
Bekhor, S., y Shiftan, Y. (2009). Specification and Estimation of Mode Choice Model Capturing Similarity between Mixed Auto and Transit Alternatives. Journal of Choice Modelling, 3(2), 29-49. DOI: 10.1016/S1755-5345(13)70034-4
Bjerre-Nielsen, A., Minor, K., Sapieżyński, P., Lehmann, S., y Lassen, D. D. (2020). Inferring transportation mode from smartphone sensors: Evaluating the potential of Wi-Fi and Bluetooth. PLOS ONE, 15(7), e0234003. DOI: 10.1371/journal.pone.0234003
Castro-Rodríguez, L, Picado-Aguilar, G., y Rodríguez-Shum, S. (2018). Evolución histórica de la modelación de demanda de transporte urbano en Costa Rica. Infraestructura Vial, 20, 4-47. DOI: 10.15517/iv.v20i1.33541
Dabiri, S., y Heaslip, K. (2018). Inferring transportation modes from GPS trajectories using a convolutional neural network. Transportation Research Part C: Emerging Technologies, 86, 360-371. DOI: 10.1016/j.trc.2017.11.021
Garber, N. y Hoel, L. (2005). Ingeniería de tránsito y carreteras. México, México D. F.: Thomson.
Hagenauer, J., y Helbich, M. (2017). A comparative study of machine learning classifiers for modeling travel mode choice. Expert Systems with Applications, 78, 273-282. DOI: 10.1016/j.eswa.2017.01.057
Hernández-Vega, H. y Umaña-Marín, G. (2018). Encuesta de Transporte 2018. Sede Rodrigo Facio Universidad de Costa Rica. Recuperado de: https://www.lanamme.ucr.ac.cr/repositorio/handle/50625112500/1582
Hillel, T., Bierlaire, M., Elshafie, M., y Jin, Y. (2020). A systematic review of machine learning classification methodologies for modelling passenger mode choice. Journal of Choice Modelling, 38, 100221. DOI: 10.1016/j.jocm.2020.100221
Hillel, T., Elshafie, M. Z., y Jin, Y. (2018). Recreating passenger mode choice-sets for transport simulation: A case study of London, UK. Proceedings of the Institution of Civil Engineers-Smart Infrastructure and Construction, 171(1), 29-42. DOI: 10.1680/jsmic.17.00018
Jahangiri, A., y Rakha, H. (2014). Developing a support vector machine (SVM) classifier for transportation mode identification by using mobile phone sensor data. En Transportation Research Board 93rd Annual Meeting. Conferencia de Transportation Research Board, Washington D.C., Estados Unidos.
Jiménez-Serpa, J. C., Rojas-Sánchez, A. E., y Salas-Rondón, M. H. (2015). Tariff integration for public transportation in the metropolitan area of Bucaramanga. INGE CUC, 11(1), 25-33. DOI: 10.17981/ingecuc.11.1.2015.02
Jiménez-Serpa, J. C., y Salas-Rondón, M. H. (2016). Un caso de estudio sobre los factores que influyen para viajar en taxi compartido desde y hacia el aeropuerto. Ingeniería de Transporte, 20(01), 33-46.
Jiménez-Serpa, J. C., y Salas-Rondón, M. H. (2017). Aplicación de modelos econométricos para estimar la aceptabilidad de una tasa por congestión vehicular. INGE CUC, 13(2), 60-78. DOI: 10.17981/ingecuc.13.2.2017.08
Kaewwichian, P., Tanwanichkul, L., y Pitaksringkarn, J. (2019). Car ownership demand modeling using machine learning: Decision trees and neural networks. International Journal of GEOMATE, 17(62), 219-230. DOI: 10.21660/2019.62.94618
Ministerio de Ambiente y Energía (2015). VII Plan Nacional de Energía 2015-2030. Programa de las Naciones Unidas para el Desarrollo PNUD. Recuperado de: https://minae.go.cr/recursos/2015/pdf/VII-PNE.pdf
Muhsin Zambang, M. A., Jiang, H., y Wahab, L. (2021). Modeling vehicle ownership with machine learning techniques in the Greater Tamale Area, Ghana. PLOS ONE, 16(2), e0246044. DOI: 10.1371/journal.pone.0246044
Omrani, H. (2015). Predicting travel mode of individuals by machine learning. Transportation Research Procedia, 10, 840-849. DOI: 10.1016/j.trpro.2015.09.037
Ortúzar, J.D. (2012). Modelos de demanda de transporte. Santiago, Chile: Ediciones UC.
París-Bravo, D. (2019). Factores determinantes para la selección de modo auxiliar para acceder a Transmilenio (Tesis de grado). Universidad de los Andes, Colombia.
Programa Estado de la Nación (2019). Informe Estado de la Nación 2019. Recuperado de: https://estadonacion.or.cr/wpcontent/uploads/2019/11/informe_estado_nacion_2019.pdf
Sagaris, L., Mindell, J., Rojas-Rueda, D., Cortínez-O´Ryan, A., Sadrangani, K., Casanave-Macías, J., González-Sánchez, Y., y Hernández-Vega, H. (2021). Transporte, Salud, Equidad Acercamientos urgentes en un mundo con y post-Covid 19. Recuperado de: https://www.cambiarnos.cl/transporte-salud-y-equidad/
Salas-Rondón, M. H., Jiménez-Serpa, J. C., y Martínez-Estupiñán, Y. F. (2021). Subsidio a la tarifa para fortalecer la operación de los sistemas estratégicos de transporte público en Colombia. Revista UIS Ingenierías, 20(3), 77-90. DOI: 10.18273/revuin.v20n3-2021005
Sekhar, C. (2014). Mode Choice Analysis: The Data, the Models and Future Ahead. International Journal for Traffic & Transport Engineering, 4(3), 269 - 285. DOI: 10.7708/ijtte.2014.4(3).03
Sekhar, C. R., y Madhu, E. (2016). Mode choice analysis using random forrest decision trees. Transportation Research Procedia, 17, 644-652. DOI: 10.1016/j.trpro.2016.11.119
Souza Pitombo, C., Schindler Gomes Da Costa, A., y Salgueiro, A. R. (2015). Proposal of a sequential method for spatial interpolation of mode choice. Boletim de Ciências Geodésicas, 21(2), 274-289. DOI: 10.1590/S1982-21702015000200016
Vassilev, A. (2018). Data Mining Applied to Transportation Mode Classification Problem. Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), 36-46. DOI: 10.5220/0006633300360046
Zenina, N., y Borisov, A. (2011). Transportation Mode Choice Analysis Based on Classification Methods. Scientific Journal of Riga Technical University Computer Sciences, 45(1), 49-53. DOI: 10.2478/v10143-011-0041-2