Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Valores de densidad en la escala de grises en Tomografía Computarizada de Haz Cónico: alcances y limitaciones
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Cone-beam volumetric imaging; Cone-beam computed tomography or cone-beam volumetric tomography; Hounsfield units; grey levels.
Tomografía computarizada de haz cónico; Tomografía computarizada volumétrica; Unidades Hounsfield; valores de gris.

Cómo citar

Ruiz-Imbert, A. C., & Cascante-Sequeira, D. (2020). Valores de densidad en la escala de grises en Tomografía Computarizada de Haz Cónico: alcances y limitaciones. Odovtos International Journal of Dental Sciences, 23(2), 52–62. https://doi.org/10.15517/ijds.2021.45106

Resumen

La tomografía computarizada de haz cónico (CBCT, por sus siglas en inglés) es una técnica de imagen 3D ampliamente usada en diagnóstico maxilofacial. El valor de densidad en la escala de grises (DEG) es una cifra que corresponde al grado de atenuación de los rayos x del material representado en cada vóxel o unidad estructural de la tomografía. De forma similar, en los sistema de tomografía computarizada de uso médico (CT) el valor de atenuación está estandarizado en las Unidades Hounsfield (UH). Aunque los valores de DEG pueden tener interesantes usos potenciales en el apoyo de diagnóstico en el área dentoalveolar, es importante conocer que  los valores UH no son los mismos a los valores DEG, y que los valores de DEG son susceptibles a múltiples factores técnicos durante la adquisición de la tomografía, por lo que se pueden obtener resultados distintos entre equipos y al variar parámetros técnicos en las tomas. Por lo tanto sus valores no deben extrapolarse entre equipos y su uso debe ser cauteloso mientras se realiza mayor investigación específica para cada equipo y para cada protocolo de adquisición.

https://doi.org/10.15517/ijds.2021.45106
PDF (English)
HTML (English)
EPUB (English)

Citas

Molteni R. The way we were (and how we got here): fifty years of technology changes in dental and maxillofacial radiology.

Dentomaxillofacial Radiol. 2020; 20200133.

Pauwels R., Jacobs R., Singer S.R., Mupparapu M. CBCT-based bone quality assessment: Are Hounsfield units applicable? Dentomaxillofacial Radiol. 2015; 44 (1).

Gaêta-Araujo H., Alzoubi T., Vasconcelos K. de F., Orhan K., Pauwels R., Casselman J.W., et al. Cone-beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofacial Radiol. 2020; 49 (8): 20200145.

Azeredo F., De Menezes L.M., Enciso R., Weissheimer A., De Oliveira R.B. Computed gray levels in multislice and cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2013;144 (1): 147-55.

Pauwels R., Nackaerts O., Bellaiche N., Stamatakis H., Tsiklakis K., Walker A., et al. Variability of dental cone beam CT grey values for density estimations. Br J Radiol. 2013; 86 (1021): 1-9.

Miles D.A., Danforth R.A. A Clinician’s Guide to Understanding Cone Beam Volumetric Imaging (CBVI) Educational Objectives. Available from: www.ada.org/goto/cerp.%5Cnwww.ineedce.com

Pauwels R., Araki K., Siewerdsen J.H., Thongvigitmanee S.S. Technical aspects of dental CBCT: State of the art. Vol. 44, Dentomaxillofacial Radiology. British Institute of Radiology; 2015.

Goulston R., Davies J., Horner K., Murphy F. Dose optimization by altering the operating potential and tube current exposure time product in dental cone beam CT: A systematic review. Dentomaxillofacial Radiol. 2016; 45 (3).

Oenning A.C., Jacobs R., Pauwels R., Stratis A., Hedesiu M., Salmon B. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Vol. 48, Pediatric Radiology. Springer Verlag; 2018. p. 308-16.

Mutalik S., Tadinada A., Molina M.R., Sinisterra A., Lurie A. Effective doses of dental cone beam computed tomography: effect of 360-degree versus 180-degree rotation angles. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020; 130 (4): 433-46.

Sedentexct. Radiation Protection 172: Cone Beam CT for Dental and Maxillofacial Radiology-Evidence-based Guidelines. Off Off Publ Eur Communities [Internet]. 2012; 156. Available from: www.sedentexct.eu

Schulze R., Heil U., Groß D., Bruellmann D.D., Dranischnikow E., Schwanecke U., et al. Artefacts in CBCT: A review. Dentomaxillofacial Radiol. 2011; 40 (5): 265-73.

Nagarajappa A., Dwivedi N., Tiwari R. Artifacts: The downturn of CBCT image. J Int Soc Prev Community Dent. 2015; 5 (6): 440.

Candemil A.P., Salmon B., Freitas D.Q., Ambrosano G.M.B., Haiter-Neto F., Oliveira M.L. Metallic materials in the exomass impair cone beam CT voxel values. Dentomaxillofacial Radiol. 2018; 47 (6): 2-4.

Molteni R. Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2013; 116 (1): 105-19.

Parsa A., Ibrahim N., Hassan B., Motroni A., Der Van Stelt P., Wismeijer D. Influence of cone beam CT scanning parameters on grey value measurements at an implant site. Dentomaxillofacial Radiol. 2013; 42 (3).

Bujtár P., Simonovics J., Zombori G., Fejer Z., Szucs A., Bojtos A., et al. Internal or in-scan validation: A method to assess CBCT and MSCT gray scales using a human cadaver. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2014; 117 (6): 768-79.

Reeves T.E., Mah P., McDavid W.D. Deriving Hounsfield units using grey levels in cone beam CT: A clinical application. Dentomaxillofacial Radiol. 2012; 41 (6): 500-8.

Mah P., Reeves T.E., McDavid W.D. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofacial Radiol. 2010; 39 (6): 323-35.

Razi T., Niknami M., Alavi Ghazani F. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. J Dent Res Dent Clin Dent Prospects [Internet]. 2014; 8 (2): 107-10.

Nomura Y., Watanabe H., Shirotsu K., Honda E., Sumi Y., Kurabayshi T. Stability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral content. Clin Oral Implants Res. 2013; 24 (5): 543-8.

Guerra E.N.S., Almeida F.T., Bezerra F.V., Figueiredo P.T.D.S., Silva M.A.G., De Luca Canto G., et al. Capability of CBCT to identify patients with low bone mineral density: A systematic review. Dentomaxillofacial Radiol. 2017; 46 (8).

Çolak M. An evaluation of bone mineral density using cone beam computed tomography in patients with ectodermal dysplasia: A retrospective study at a single center in Turkey. Med Sci Monit. 2019; 25: 3503-9.

Hakim S.G., Glanz J., Ofer M., Steller D., Sieg P. Correlation of cone beam CT-derived bone density parameters with primary implant stability assessed by peak insertion torque and periotest in the maxilla. J Cranio-Maxillofacial Surg [Internet]. 2019; 47 (3): 461-7.

Kaya S., Yavuz I., Uysal I., Akku Z. Measuring bone density in healing periapical lesions by using cone beam computed tomography: A clinical investigation. J Endod. 2012; 38 (1): 28-31.

Komori M., Miuchi S., Hyodo J., Kobayashi T., Hyodo M. The gray scale value of ear tissues undergoing volume-rendering high-resolution cone-beam computed tomography. Auris Nasus Larynx [Internet]. 2018; 45 (5): 971-9.

Emadi N., Safi Y., Akbarzadeh Bagheban A., Asgary S. Comparison of CT-number and gray scale value of different dental materials and hard tissues in CT and CBCT. Iran Endod J. 2014; 9 (4): 283-6.

Oliveira M.L., Tosoni G.M., Lindsey D.H., Mendoza K., Tetradis S., Mallya S.M. Assessment of CT numbers in limited and medium field-of-view scans taken using accuitomo 170 and veraviewepocs 3De cone-beam computed tomography scanners. Imaging Sci Dent. 2014; 44 (4): 279-85.

Shokri A., Ramezani L., Bidgoli M. Akbarzadeh M., Ghazikhanlu-Sani K., Fallahi-Sichani H. Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans.

Imaging Sci Dent. 2018; 48 (1): 31-9.

Martins L.A.C., Queiroz P.M., Nejaim Y., De Faria Vasconcelos K., Groppo F.C., Haiter-Neto F. Evaluation of metal artefacts for two CBCT devices with a new dental arch phantom. Dentomaxillofacial Radiol. 2020; 49 (5).

Machado A.H., Fardim K.A.C., De Souza C.F., Sotto-Maior B.S., Assis N.M.S.P., Devito K.L. Effect of anatomical region on the formation of metal artefacts produced by dental implants in cone beam computed tomographic images. Dentomaxillofacial Radiol. 2018; 47 (3).

Candemil A.P., Salmon B., Freitas D.Q., Haiter-Neto F., Oliveira M.L. Distribution of metal artifacts arising from the exomass in small field-of-view cone beam computed tomography scans. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2020; 130 (1): 116-25.

Magill D., Beckmann N., Felice M.A., Yoo T., Luo M., Mupparapu M. Investigation of dental cone-beam CT pixel data and a modified method for conversion to hounsfield unit (HU). Dentomaxillofacial Radiol. 2018; 47 (2).

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.