https://revistas.ucr.ac.cr/index.php/actualidadesActualidades en Psicología ISSN Impreso: 0258-6444 ISSN electrónico: 2215-3535

Modelos cognitivos formales: Una herramienta para la integración del conocimiento en psicología cognitiva y neurociencia cognitiva

Odir Rodríguez Villagra



DOI: https://doi.org/10.15517/ap.v28i117.14481

Resumen


El objetivo de la presente revisión fue proponer algunas recomendaciones para aquellos psicólogos cognitivos interesados en incorporar el estudio del sistema nervioso en sus investigaciones. Primero, son presentadas algunas resistencias de científicos cognitivos y neurocientíficos para incorporar las teorías de la neurociencia o la psicología cognitiva en sus respectivas áreas de estudio. Luego, se exponen algunos riesgos relacionados con el atractivo de las neurociencias. Segundo, se proponen los modelos cognitivos formales como una herramienta importante en la integración del conocimiento entre la psicología cognitiva y la neurociencia cognitiva. Tercero, se presentan ejemplos de cómo los modelos cognitivos formales ayudan al razonamiento en el contexto de la investigación en neurociencia cognitiva. Finalmente, se enumeran algunas recomendaciones con el afán de promover un inicio promisorio en la investigación en neurociencia cognitiva.


Palabras clave


Psicología cognitiva; neurociencia cognitiva; modelos cognitivos formales; razonamiento

Texto completo:

PDF

Referencias


Baddeley, A. D., Thomson, N. & Buchanan, M. (1975). Word length and the structure of shortterm memory. Journal of Verbal Learning and Verbal Behavior, 14, 575-589.

Barrouillet, P., Bernardin, S. & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83-100.

Barrouillet, P., Bernarding, S., Portrat, S., Vergauwe, E. & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 570-585.

Bennett, M. R. & Hacker, P. M. (2006). Language and cortical function: Conceptual developments. Progress in Neurobiology, 80, 20-52.

Brown, G. D. A. & Lewandowsky, S. (2010). Forgetting in memory models: Arguments againts trace decay and consolidation failure. In S. Della Sala (Ed.), Forgetting (pp. 49-75). Hove: Psychology Press.

Brown, S. D. (2012). Common ground for behavioural and neuroimaging research. Australian Journal of Psychology, 64, 4-10.

Camos, V., Lagner, P. & Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory. Journal of Memory and Language, 61, 457-469.

Colthear, M. (2012). The cognitive level of explanation. Australian Journal of Psychology, 64, 11-18.

Corrado, G. & Doya, K. (2007). Understanding neural coding through the model-based analysis of decision making. Journal of Neuroscience, 27, 8178-8180.

Dolan, R. J. (2008). Neuroimaging of cognition: past, present, and future. Neuro, 60, 496-502.

Farrell, S. & Lewandowsky, S. (2010). Computational models as aids to better reasoning in psychology. Current Directions in Psychological Science, 19, 329-335.

Forstmann, B. U., Wagenmakers, E.-J., Eichele, T., Brown, S. & Serences, J. T. (2011). Reciprocal relations between cognitive neuroscience and formal cognitive models: Opposites attract? Trends in Cognitive Sciences, 15, 272-279.

Gallistel, C. R. (1999). Themes of thought and thinking. In R. J. Sternberg (Ed.), The Nature of Cognition. Science, 285, 842–843.

Kieras, D. E., Meyer, D. E., Mueller, S. & Seymour, T. (1999). Insights into working memory from the perspective of the EPIC architecture for modelling skilled perceptualmotor and cognitive human performance. In A. Miyake and P. Shah (Eds.), Models of working memory: Mechanisms

of active maintenance and control (pp. 183-223). New York, NY: Cambridge University Press.

Kihlstrom, J. F. (2010). Social neuroscience: The footprints of Phineas Gage. Social Cognition, 28, 757–783.

Kim, J-J., Kim, M. S., Lee, J. S., Lee, D. S., Lee, M. C., & Kwon, J. S. (2002). Dissociation of working memory processing associated with native and second languages: PET investigation. NeuroImage,

, 879-891.

Lewandowsky, S. (1993). The rewards and hazards of computer simulations. Psychological Science, 4, 236-243.

Lewandowsky, S. & Farrell, S. (2011). Computational Modeling in Cognition: Principles and Practice. Thousand Oaks, CA: Sage.

Lewandowsky, S., Ecker, U. K. H., Farrell, S. & Brown, G. D. A. (2012). Models of cognition and constraints from neuroscience: A case study involving consolidation. Australian Journal of Psychology, 64, 37-45.

Mercier, H. & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34, 57-111.

Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: A diffusion model analysis of prior probability and potential payoff. The Journal of Neuroscience, 32, 2335-2343.

Naughtin, C. K., Mattingley, J. B. & Dux, P. E. (2014). Distributed and overlapping neural substrates for object individuation and identification in visual short-term memory. Cerebral Cortex. Advance online

publication. doi:10.1093/cercor/bhu212

O’Doherty, J. P., Hampton, A. & Kim, H. (2007) Model-based fMRI and its application to reward learing and decision making. Annals of the New York Academy of Sciences, 1104, 35-53.

Oberauer, K. & Kliegl, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55, 601-626.

Oberauer, K. & Lewandowsky, S. (2011). Modeling working memory: A computational implementation of the Time-Based Resource-Sharing theory. Psychonomic Bulletin & Review, 18, 10-45.

Oberauer, K. Lewandowsky, S., Farrell, S., Jarrod, C. & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19, 779-819.

Pages, M. P. A. & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105, 761-781.

Peigneux P., Schmitz R., & Urbain, C. (2010). Sleep and Forgetting. In S. Della Sala (Ed.), Forgetting (pp. 165- 184). Hove: Psychology Press.

Ratcliff, R. (2002). A diffusion model account of reaction time and accuracy in a two choice brightness discrimination task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin and Review, 9, 278–291.

Ratcliff, R. & McKoon, G. (2007). The diffusion decision model: Theory and data for two-choice decision task. Neural Computation, 20, 873-922.

Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A.,… Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19, 1846-1852.

Sternberg, R. J. & Sternberg, K. (2011). Cognitive Psychology. Cengage Learning: Belmont California. Vogel, E., McCollough, A. W. & Machizawa, M. G. (2005). Neural measures reveal individual diferences in controlling access to working memory. Nature, 438, 500-503.

Voss, A., Nagler, M. & Lerche, V. (2013). Diffusion models in experimental psychology: a practical introducction. Experimental Psychology, 60, 385-402.

Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E. & Gray, J. R. (2008). The seductive allure of neuroscience explanations. Journal of Cognitive Neuroscience, 20, 470-477.

Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55, 235-269.

Wixted, J. T. (2010). The role of retroactive interference and consolidation in everyday forgetting. In S. Della Sala (Ed.), Forgetting (pp. 285-312). Hove: Psychology Press.

Yechiam, E., Busemeyer, J. R., Stout, J. C. & Bechara, A. (2005). Using cognitive models to map relations between neuropsychological disorders and human decision-making déficits. Psychological Science, 16, 973-978.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2015 Actualidades en Psicología

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: https://revistas.ucr.ac.cr/index.php/index/oai