Actualidades en Psicología ISSN Impreso: 0258-6444 ISSN electrónico: 2215-3535

OAI: https://revistas.ucr.ac.cr/index.php/actualidades/oai
Modelos de variables latentes, modelación cognitiva y memoria de trabajo: un punto de encuentro
PDF
HTML
XML

Palabras clave

Latent variable models
formal cognitive models
psychometric
working memory
modelos de variables latentes
modelos cognitivos formales
psicometría y memoria de trabajo

Cómo citar

Rodríguez-Villagra, O. A. (2015). Modelos de variables latentes, modelación cognitiva y memoria de trabajo: un punto de encuentro. Actualidades En Psicología, 29(119), 43–62. https://doi.org/10.15517/ap.v29i119.18850

Resumen

Los modelos de variables latentes y los modelos cognitivos formales comparten algunos aspectos de su objeto de estudio, varios aspectos filosóficos y parte de su metodología. A pesar de ello, existe poca comunicación entre sus teorías y hallazgos. Con el objetivo de resaltar similitudes y diferencias entre ambos enfoques en este estudio se implementó y evaluó un modelo formal que propone la interferencia entre representaciones como el mecanismo que limita la capacidad de memoria de trabajo (i.e., el modelo de interferencia de Oberauer & Kliegl, 2006). Además, se incorporó una manipulación experimental quetuvo como objetivo evaluar el papel de la inhibición en respuestas inminentes y el desplazamiento de la atención entre tareas en el contexto del modelo de interferencia. A partir de estos hallazgos se expusieron algunas conexiones que podrían facilitar el acercamiento entre los modelos cognitivos formales y los modelos psicométricos basados en la teoría de la variable latente.
https://doi.org/10.15517/ap.v29i119.18850
PDF
HTML
XML

Citas

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of mind. Psychological Review, 111, 1036-1060.

Arendasy, M. E. & Sommer, M. (2005). The effect of different types of perceptual manipulations on the dimensionality of automatically generated figural matrices. Intelligence, 33, 307-324.

Arendasy, M. E. & Sommer, M. (2013). Reducing response elimination strategies enhances the construct validity of figural matrices. Intelligence, 41, 234-243.

Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575-589.

Barrouillet, P. & Camos, V. (2009). Interference: Unique source of forgetting in working memory? Trends in Cognitive Sciences, 13, 145-146.Borsboom, D. (2006). The attack of psychometricians. Psychometrika, 71, 425-440.

Brown, G. D. A., Neath, I., & Chater, N. (2007). A ratio model of scale-invariant memory and identification. Psychological Review, 107, 127-181.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York; Springer-Verlag.

Camos, V., Lagner, P., & Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory. Journal of Memory and Language, 61, 457-469.

Carpenter, P.A., Just, M.A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of processing in the Raven progressive matrices test. Psychological Review, 97, 404– 431.

Cattell, R.B. (1987). Abilities: Their structures, growth, and actions. New York: North-Holland.

Conrad, R. & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55, 75-84.

Coopeland, D. E., & Radvansky, G. A. (2001). Phonological similarity in working memory. Memory & Cognition, 29, 774-776.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-185.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulleting, 52, 281-302.

Embretson, S. E. (1995). The role of working memory capacity and general control processes in intelligence. Intelligence, 20, 169–189.

Embretson, S. E. (2004). The second century of ability testing: Some predictions and speculations. Measurement, 2, 1-32.

Embretson, S. E. (2010). Cognitive design systems: A structural modeling approach applied to developing a spatial ability test. In S. E. Embretson (Ed.), Measuring psychological constructs: Advances in model-based approaches (pp. 247-273). Washington, DC: American Psychological Association.

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309-331.

Farrell, S. & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin & Review, 9, 59-79.

Forstmann, B. U., Wagenmakers, E-J., Eichele, T., Brown, S., & Serences, J. T. (2011). Reciprocal relations between cognitive neuroscience and formal cognitive models: Opposites attract? Trends in Cognitive Sciences, 15, 272-279.

Friedman, N. P. & Miyake, A. (2004). The relations among inhibition and interference cognitive functions: A latent variable analysis. Journal of Experimental Psychology: General, 133, 101-135.

Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26, 263-276.

Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat, (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 653–675). Cambridge, MA: MIT Press.

Kvist, A., V. & Gustafsson, J-E. (2008). The relation between fluid intelligence and the general factor as a function of cultural background: A test of Cattell’s Investment theory. Intelligence, 36, 422-436.

Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14, 389-433.

Lewandowsky, S., Oberauer, K., & Brown, G. D. A. (2009). Response to Barrouillet and Camos: Interference or decay in working memory. Trends in Cognitive Sciences, 13, 146-147.

Lobley, K. J., Baddeley, A. D., & Gathercole, S. E. (2005). Phonological similarity effect in verbal complex span. Quarterly Journal of Experimental Psychology, 58A, 1464-1478.

Luce, R. D. (1995). Four tensions concerning mathematical modeling in psychology. Annual Review of Psychology, 46, 1-26.

Markus, K. A. & Borsboom, D. (2013). Frontiers of test validity theory. Measurement, causation, and meaning. NY: Routledge.

McClelland, J. L. (1979). On the time relations of mental processes: an examination of systems of processes in cascade. Psychological Review, 86, 287-330.

McElree, B., & Dosher, B. A. (1989). Serial position and set size in short-term memory: the time course of recognition. Journal of Experimental Psychology: General, 118, 346-373.

Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (pp. 13-103). Washington, DC: American Council on Education and National Council on Measurement in Education.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of the executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100.

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134-140.Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251-269.

Nosofky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General 115, 39-61.

Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50(4), 257-269.

Oberauer, K., & Kliegl, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55(4), 601-626.

Oberauer, K. & Lewandowsky, S. (2011). Modeling working memory: A computational implementation of the Time-Based Resource-Sharing theory. Psychonomic Bulletin & Review, 18,10-45.

Oberauer, K., & Lewandowsky, S., Farrell, S., Jarrold, C. & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19, 779-819.

Pages, M. P. A. & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105, 761-781.

Palladino, P., Cornoldi, C., De Beni, R., & Pazzaglia, F. (2001). Working memory and updating processes in reading comprehension. Memory &Cognition, 29(2), 344-354.

Primi, R. (2001). Complexity of geometric inductive reasoning tasks. Contribution to the understanding of fluid intelligence. Intelligence 30(1), 41–70.

Psychometric Society. (2015). What is psychometrics? Retrieved from https://www.psychometricsociety.org/content/what-psychometrics

Ratcliff, R. & McKoon, G. (2007). The diffusion decision model: Theory and data for two-choice decision task. Neural Computation, 20, 873-922.

Schmiedek, F., Hildebrandt, A., Lövdén, M., Wilhelm, O., & Lindenberger, U. (2009). Complex span versus updating tasks of working memory: The gap is not that deep. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1089-1096.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh: Psychology Software Tools, Inc.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108, 550-592.

Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). New York: Springer-Verlag.

Wallsten, T. S., Pleskac, T. J., & Lejuez, C. W. (2011). Modeling behaviour in a clinical diagnostic sequential risk-taking task. Psychological Review, 112, 862-880.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44, 92-107.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.