Chemical composition and antimicrobial activity of the essential oil of Psidium guajava and Cymbopogon citratus


  • María José Bermúdez-Vásquez Instituto Tecnológico de Costa Rica, Escuela de Biología, Ingeniería en Biotecnología.
  • Fabio Granados-Chinchilla Universidad de Costa Rica, Centro de Investigación en Nutrición Animal.
  • Andrea Molina Universidad de Costa Rica, Escuela de Zootecnia y Centro de Investigación en Nutrición Animal.



essential oils, antimicrobial, guava, Lemon grass, animal feed


Introduction. The resistance of microorganisms to antibiotics is a public health problem that can affect livestock producers by having fewer options to treat animals in the event of a infection. Extracts of some plants with antimicrobial activity may represent an alternative to the use of antibiotics in livestock production. Objective. The objective of this work was to analyze the chemical composition and antimicrobial activity of the essential oils of guava leaves (Psidium guajava L.) and lemon grass (Cymbopogon citratus (DC.) Stapf) grown in Costa Rica and evaluate antimicrobial activity of P. guajava L. in meat and bone meal. Materials and methods. This research was developed at the Animal Nutrition Research Center (CINA) of the University of Costa Rica between March and October 2016. P. guajava leaves were collected from two different locations (San Pedro and Escazú) and those from C. citratus from the areas of Sarapiquí and Escazú. The extraction of the oils was done by hydrodistillation. The chemical composition was analyzed by gas chromatography and mass spectrometry. The antimicrobial capacity of the essential oils was evaluated by the disk diffusion test and the 96-well plate microdilution procedure. Results. The essential oils of C. citratus and P. guajava presented antimicrobial activity against the ten bacterial strains tested, being the gram positive bacteria the most sensitive to them. P. guajava oil from Escazú showed higher antimicrobial activity in vitro with respect to P. guajava oil from San Pedro and C. citratus oil. The oil of P. guajava had the ability to eliminate Escherichia coli that had previously been added to a matrix of meat and bone meal, but not to prevent colonization of it. Conclusion. According to the results of this research, the essential oils of lemon grass and guava leaf grown in Costa Rica, have an antimicrobial effect against bacteria relevant for feed safety and feed shelf life, future research is required to evaluate its applicability in animal feed.


Download data is not yet available.


Arellano, A.R., y F.P. Montesdeoca. 2016. Evaluación de preservantes naturales, para incrementar el tiempo de vida útil de análogos proteicos elaborados con Quinua. Tesis Ing., Universidad de las Américas, Quito, ECU.

Arima, H., and G.I. Danno. 2002. Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation. Biosci. Biotechnol. Biochem. 66:1727-1730. doi:10.1271/bbb.66.1727

Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar. 2008. Biological effects of essential oils - A review. Food Chem. Toxicol. 46:446-475. doi:10.1016/j.fct.2007.09.106

Balouiri, M., M. Sadiki, and S.K. Ibnsouda. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharma. Anal. 6(2):71-79. doi:10.1016/j.jpha.2015.11.005

Bassolé, I.H., and H.R. Juliani, 2012. Essential oils in combination and their antimicrobial properties. Molecules 17:3989-4006. doi:10.3390/molecules17043989

Biswas, B., K. Rogers, F. McLaughlin, D. Daniels, and A. Yadav. 2013. Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. Int. J. Microbiol. 2013:ID746165. doi:10.1155/2013/746165

Boire, N.A., S. Riedel, and N.M. Parrish. 2013. Essential oils and future antibiotics: new weapons against emerging ‘superbugs’? J. Anc. Dis. Prev. Rem. 1:105. doi:10.4172/2329-8731.1000105

Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods - A review. Int. J. Food Microbiol. 94:223-253. doi:10.1016/j.ijfoodmicro.2004.03.022

Cerpa, M.G. 2007. Hidrodestilación de aceites esenciales: Modelado y caracterización. Tesis Dr., Universidad de Valladolid, Valladolid, ESP. (consultado 23 de Abril del 2018).

CLSI (Clinical and Laboratory Standards Institute). 2012. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard. 9th ed. CLSI, PA, USA.

Cochrane, R.A., A.R. Huss, G.C. Aldrich, C.R. Stark, and C.K. Jones. 2016. Evaluating chemical mitigation of Salmonella Typhimurium ATCC 14028 in animal feed ingredients. J. Food Prot. 79:672-676. doi:10.4315/0362-028X.JFP-15-320

de-Souza, L., L.F. Damé, G. Hörnke, M.A. Ziemann, M.R. Alves, y M.C. Araújo. 2011. Evaluación de la actividad bactericida de aceites esenciales de hojas de guayabo, pitango y arazá. Rev. Cubana Plant. Med. 16:324-330.

Eloff, J.N. 1998. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J. Ethnopharmacol. 60:1-8. doi:10.1016/S0378-8741(97)00123-2

Fernandes, M.R.V., A.L.T. Dias, R.R. Carvalho, C.R.F. Souza, and W.P. Oliveira. 2014. Antioxidant and antimicrobial activities of Psidium guajava L. spray dried extracts. Indust. Crops Prod. 60:39-44. doi:10.1016/j.indcrop.2014.05.049

Fischer, K., and C. Phillips. 2008. Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci. Technol. 19:156-164. doi:10.1016/j.tifs.2007.11.006

Granados-Chinchilla, F. 2017. A review on phytochemicals (including essential oils and extracts) inclusion in feed and their effects on food producing animals. Dairy Vet. Sci. J. 3(4):555620. doi:10.19080/JDVS.2017.03.555620

Granados-Chinchilla, F., E. Villegas, A. Molina, and C. Arias. 2016. Composition, chemical fingerprinting and antimicrobial assessment of Costa Rican cultivated guavas (Psidium friedrichsthalianum (O. Berg) Nied. and Psidium guajava L.) essential oils from leaves and fruits. Nat. Prod. Chem. Res. 4:236. doi:10.4172/2329-6836.1000236

Guan, W., S. Li, R. Yan, S. Tang, and C. Quan. 2007. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem. 101:1558-1564. doi:10.1016/j.foodchem.2006.04.009

Ifeanyichukwu, I., E. Chika, N. Emmanuel, O. Anthonia, A. Ngozi, and N. Agabus. 2015. Preliminary investigation of the antibacterial activity of Psidium guajava extracts. Eur. J. Med. Plants 7:26-30. doi:10.9734/EJMP/2015/14307

Jahani, S., S. Saeidi, F. Javadian, Z. Akbarizadeh, and A. Sobhanizade. 2016. Investigating the antibacterial effects of plant extracts on Pseudomonas aeruginosa and Escherichia coli. Int. J. Infect. 3(2):e34081. doi:10.17795/iji-34081

Jorgensen, J.H., and M.J. Ferraro. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49:1749-1755. doi:10.1086/647952

Joseph, B., and R.M. Priya. 2011. Phytochemical and biopharmaceutical aspects of Psidium guajava (L.) essential oil: A review. Res. J. Med. Plants 5432-442. doi:10.3923/rjmp.2011.432.442

Leiva, A., F. Granados-Chinchilla, M. Redondo-Solano, M. Arrieta-González, E. Pineda-Salazar, and A. Molina. 2018. Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety. Poult. Sci. 97:2159-2169. doi:10.3382/ps/pey058

Martínez, M.J., N. Molina, y E. Boucourt. 1997. Evaluación de la actividad antimicrobiana del Psidium guajava L. (Guayaba). Rev. Cubana Plant. Med. 2:12-14.

Molina, A., F. Granados-Chinchilla, M. Jiménez, M. Acuña-Calvo, M. Alfaro, and G. Chavarría. 2016. Vigilance for Salmonella in feedstuffs available in Costa Rica: prevalence, serotyping and tetracycline resistance of isolates obtained from 2009 to 2014. Foodborne Pathog. Dis. 13(3):119-127. doi:10.1089/fpd.2015.2050

Moura, P.M., G.H.C. Prado, M.A.A. Meireles, and C.G. Pereira. 2012. Supercritical fluid extraction from guava (Psidium guajava) leaves: global yield, composition and kinetic data. J. Supercrit. Fluid. 62:116-122. doi:10.1016/j.supflu.2011.11.04

Nazzaro, F., F. Fratianni, L. De-Martino, R. Coppola, and V. De-Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451-1474. doi:10.3390/ph612145

Negrelle, R.R.B., and E.C. Gomes, E.C. 2007. Cymbopogon citratus (DC.) Stapf: chemical composition and biological activities. Rev. Bras. Plantas Med. 9(1):80-92.

Padmavathi, A.R., D. Bakkiyaraj, N. Thajuddin, and S.K. Pandian. 2015. Effect of 2, 4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. Biofouling 31:565-574. doi:10.1080/08927014.2015.1077383

Pérez, R.M., S. Mitchell, and R.V. Solis. 2008. Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 117:1-27. doi:10.1016/j.jep.2008.01.025

Perricone, M., E. Arace, M.R. Corbo, M. Sinigaglia, and A. Bevilacqua. 2015. Bioactivity of essential oils: a review on their interaction with food components. Front. Microbiol. 6:76. doi:10.3389/fmicb.2015.00076

Rivera, J., P.G. Crandall, C.A. O’Bryan, and S.C. Ricke. 2015. Essential oils as antimicrobials in food systems: A review. Food Control 54:111-119. doi:10.1016/j.foodcont.2014.12.040

Roy, C.K., J.V. Kamath, and M. Asad. 2006. Hepatoprotective activity of Psidium guajava Linn. leaf extract. Indian J. Exp. Biol. 44:305-311.

Schmidt, E. 2010. Production of essential oils. En: K.H.C. Baser, and G. Buchbauer, editors, Handbook of essential oils: science, technology, and applications. Taylor & Francis Group, FL, USA. p. 83-120.

Shah, G., R. Shri, V. Panchal, N. Sharma, B. Singh, and A.S. Mann. 2011. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2:3-8. doi:10.4103/2231-4040.79796

Sonker, N., A.K. Pandey, P. Singh, and N.N. Tripathi. 2014. Assessment of Cymbopogon citratus (DC.) stapf essential oil as herbal preservatives based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. J. Food Sci. 79:628-634. doi:10.1111/1750-3841.12390

Varsha, K.K, L. Devendra, G. Shilpa, S. Priya, A. Pandey, and K.M. Nampoothiri. 2015. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 211:44-50. doi:10.1016/j.ijfoodmicro.2015.06.025

Zapata, K., F.B. Cortes, y B.A. Rojano. 2013. Polifenoles y actividad antioxidante del fruto de Guayaba Agria (Psidium araca). Inf. Tecnol. 24(5):103-112. doi:10.4067/S0718-07642013000500012

Zulfa, Z., C.T. Chia, and Y. Rukayadi. 2016. In vitro antimicrobial activity of Cymbopogon citratus (lemongrass) extracts against selected foodborne pathogens. Int. Food Res. J. 23:1262-1267.



How to Cite

Bermúdez-Vásquez, M. J., Granados-Chinchilla, F., & Molina, A. (2019). Chemical composition and antimicrobial activity of the essential oil of Psidium guajava and Cymbopogon citratus. Agronomía Mesoamericana, 30(1), 147–163.