Probiotics and their mechanism of action in animal feed

Authors

DOI:

https://doi.org/10.15517/am.v30i2.34432

Keywords:

beneficio microorganisms, animal health, food, feed aditive, growth promoters, microbial flora

Abstract

Introduction. In the livestock production for commercial purposes, additives are frequently used to increase the effectiveness of nutrients present in the food, its availability, and absorption in the gastrointestinal tract, as well as modulate the intestinal flora of animals and promote their growth and productivity. Antibiotics have been among the most used additives in recent decades animal production worldwide. Objective. The aim of this literature review was to describe the use of probiotics as additives in animal nutrition, as an alternative to the use of antibiotics as growth promoters in commercial livestock production. Development. This compilation analyzes the current definition of probiotics accepted by the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) it also describres the microorganisms allowed as probiotics in animal nutrition in Costa Rica and the United States. Additionally,the main mechanisms of action in productive animals are explained. Probiotics are living organisms that when administered in adequate amounts confer a benefit to the health of the host, this effect must be proven and overcome the effect given by the placebo. The microorganisms used as probiotics in animal nutrition should not be pathogenic for animals, and should be resistant to the processes of food and feed elaboration. It has been reported that the benefit of probiotics in productive animals is mainly due to the fact that these promote the microbial balance in the digestive tract and the modulation of the immune system, resulting in an increase in the digestion and absorption of nutrients and decreasing the incidence of infectious diseases. Conclusion. The use of different probiotics in productive animals to increase productivity and animal health, has been proven in different commercial livestock species and its use is promising as a growth promoter instead of antibiotics.

Downloads

Download data is not yet available.

References

Abdelqader, A., R. Irshaid, and A.R. Al-Fataftah. 2013. Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production. Trop. Anim. Health. Prod. 45:1017-1024. doi:10.1007/s11250-012-0326-7

Afsharmanesh, M., and B. Sadaghi. 2014. Effects of dietary alternatives (probiotic, green tea powder and Kombucha tea) as antimicrobial growth promoters on growth, ileal nutrient digestibility, blood parameters, and immune response of broiler chickens. Comp. Clin. Pathol. 23:717-724. doi:10.1007/s00580-013-1676-x

Ahmed, S.T., J. Hoon, H.S. Mun, and C.J. Yang. 2014. Evaluation of Lactobacillus and Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr. J. Microbiol. Res. 8:96-104. doi:10.5897/ AJMR2013.6355

An, B., B. Cho, S. You, H. Paik, H. Chang, S. Kim, C. Yun, and C. Kang. 2008. Growth per-formance and antibody response of broiler chicks fed yeast derived β-glucan and single-strain probiotics. Asian-Australas. J. Anim. Sci. 21:1027-1032. doi:10.5713/ajas.2008.70571

Anderson, R.C., A.L. Cookson, W.C. McNabb, Z. Park, M.J. McCann, W.J. Kelly, and N.C. Roy. 2010. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 10:316. doi:10.1186/1471-2180-10-316

Apata, D. 2008. Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. J. Sci. Food Agric. 88:1253-1258. doi:10.1002/jsfa.3214

Bai, S., A. Wu, X. Ding, Y. Lei, J. Bai, K. Zhang, and J. Chio. 2013. Effects of probiotic-sup-plemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poult. Sci. 92:663-670. doi:10.3382/ps.2012-02813.

Bajagai, Y.S., A.V. Klieve, P.J. Dart, and W.L. Bryden. 2016. Probiotics in animal nutrition: Production, impact and regulation. paper 179. FAO Animal Production and Health, Rome, ITA.

Bermudez-Brito, M., J. Plaza-Díaz, S. Muñoz-Quezada, C. Gómez-Llorente, and A. Gil. 2012. Probiotic mechanisms of action. Ann. Nutr. Metab. 61:160-174. doi:10.1159/000342079

Carattoli, A. 2013. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303(6-7):298-304. doi:10.1016/j.ijmm.2013.02.001.

Chahal, U.S., P.S. Niranjan, and S. Kumar. 2008. Handbook of general animal nutrition. International Book Distributing Co., IND.

Chaucheyras-Durand, F., and H.M. Durand. 2010. Probiotics in animal nutrition and health. Benef. Microbes 11:3-9. doi:10.3920/BM2008

Chawla, S., S. Katoch, K. Sharma, and V. Sharma. 2013. Biological response of broiler supple-mented with varying dose of direct fed microbial. Vet. World 6:521-524. doi:10.5455/vetworld.2013.521-524

Cheikhyoussef, A., N. Pogori, W. Chen, and H. Zhang. 2008. Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. Int. J. Food Microbiol. 125:215-222. doi:10.1016/j.ijfoodmicro.2008.03.012.

Collington, G., D. Parker, and D. Armstrong. 1990. The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig. Br. J. Nutr. 64:59-70. doi:10.1079/BJN19900009

Corr, S.C., Y. Li, C.U. Riedel, P.W. O’Toole, C. Hill, and C.G. Gahan. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. PNAS 104:7617-7621. doi:10.1073/pnas.0700440104

Cutting, S.M. 2011. Bacillus probiotics. Food Microbiol. 28:214-220. doi:10.1016/j.fm.2010.03.007

Daskiran, M., A.G. Onol, O. Cengiz, H. Unsal, S. Turkyilmaz, O. Tatli, and O. Sevim. 2012. Influence of dietary probiotic inclusion on growth performance, blood parameters, and intestinal microflora of male broiler chickens exposed to posthatch holding time. J. Appl. Poult. Res. 21:612-622. doi:10.3382/japr.2011-00512

Diarra, M.S., and F. Malouin. 2014. Antibiotics in Canadian poultry productions and anticipated alternatives. Front. Microbiol. 5:282. doi:10.3389/fmicb.2014.00282

Dowarah, R., A.K. Verma, and N. Agarwal. 2016. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Anim. Nutr. 3:1-6. doi:10.1016/j.aninu.2016.11.002

Dutil, L., R. Irwin, R. Finley, L.K. Ng, B. Avery, P. Boerlin, and D.R. Pillai. 2010. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg. Infect. Dis. 16:48-54. doi:10.3201/eid1601.090729

FAO/WHO. 2001. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. FAO/WHO, ARG.

FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. FAO/WHO, CAN.

Flint, H.J., and E.A. Bayer. 2008. Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann. N. Y. Acad. Sci. 1125:280-288. doi:10.1196/annals.1419.022

Gadde, U., W. Kim, S. Oh, and H. Lillehoj. 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 18:26-45. doi:10.1017/S1466252316000207

Granados-Chinchilla, F. 2017. A review on phytochemicals (Including essential oils and extracts) inclusion in feed and their effects on food producing animals. J. Vet. Med. Sci. 3:555620. doi:10.19080/JDVS.2017.03.555620002

Hassan, M., M. Kjos, I. Nes, D. Diep, and F. Lotfipour. 2012. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J. App. Microbiol. 113:723-736. doi:10.1111 /j.1365-2672.2012.05338

Hess, M., A. Sczyrba, R. Egan, T.W. Kim, H. Chokhawala, G. Schroth, S. Luo, D.S. Clark, F. Chen, T. Zhang, R.I. Mackie, L.A. Pennacchio, S.G. Tringe, A. Visel, T. Woyke, Z. Wang, and E.M. Rubin. 2011. Metagenomic discovery of biomass degrading genes and genomes from cow rumen. Science 331:463-467. doi:10.1126/science.1200387

Hill, C., F. Guarner, G. Reid, G.R. Gibson, D.J. Merenstein, B. Pot, M. Morelli, R.B. Canani, H.J. Flint, S. Salminen, P.C. Calder, and M.E. Sanders. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 1:506-514. doi:10.1038/ nrgastro.2014.66

Hung, A.T., S.T. Lin, T.Y. Yang, C.K. Chou, H.C. Liu, J.J. Lu, B. Wang, S.Y. Chen, and T.F. Lien. 2012. Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Anim. Prod. Sci. 52:874-879. doi:10.1071/AN11332

Jarman, J. 2018. Fermentation products. In: AAFCO, editor, AAFCO 2018 Official publication. AAFCO, Atlanta, GA, USA. p. 384-388.

Jin, L., Y. Ho, N. Abdullah, and S. Jalaludin. 2000. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 79:886-891. doi:10.1093/ps/79.6.886

Johnson-Henry, K.C., K.E. Hagen, M. Gordonpour, T.A. Tompkins, and P.M. Sherman. 2007. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157: H7 adhesion to epithelial cells. Cell. Microbiol. 9:356-367. doi:10.1111/j.1462-5822.2006.00791.x

Jordan, K., M. Dalmasso, J. Zentek, A. Mader, G. Bruggeman, J. Wallace, D. De Medici, A. Fiore, E. Prukner-Radovcic, M. Lukac. L. Axelsson, A. Holck, H. Ingmer, and M. Malakauskas. 2014. Microbes versus microbes: control of pathogens in the food chain. J. Sci. Food. Agric. 94:3079-3089. doi:10.1002/jsfa.6735

Konstantinov, S.R., H. Smidt, A.D. Akkermans, L. Casini, P. Trevisi, M. Mazzoni, S. De-Filippi, P. Bosi, and W. de-Vos. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66:599-607. doi:10.1111/j.1574-6941.2008.00517.x

Landy, N., and A. Kavyani. 2013. Effects of using a multi-strain probiotic on performance, immune responses and caecal microflora composition in broiler chickens reared under cyclic heat stress condition. Iran. J. Appl. Anim. Sci. 3:703-708.

Lee, Y.J., B.K. Kim, B.H. Lee, K.I. Jo, N.K. Lee, C.H. Chung, Y.C. Lee, and J.W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Biores. Technol. 99:378-386. doi:10.1016/j. biortech.2006.12.013.

Li, L.L., Z.P. Hou, T.J. Li, G.Y. Wu, R.L. Huang, Z.R. Tang, C.B. Yang, J. Gong, H. Yu, and X.F. Kong. 2008. Effects of dietary probiotic supplementation on ileal digestibility of nutrients and growth performance in 1- to 42-day-old broilers. J. Sci. Food. Agric. 88:35-42. doi:10.1002/jsfa.2910

Liu, H., J. Zhang, S.H. Zhang, F.J. Yang, P.A. Thacker, G.L. Zhang, S. Qiao, and X. Ma. 2014. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J. Agric. Food. Chem. 62:860-866. doi:10.1021/jf403288r

Llopis, M., M. Antolin, F. Guarner, A. Salas, and J. Malagelada. 2005. Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitronbenzene sulphonic acid. Gut. 54:955-959. doi:10.1136/gut.2004.056101

Lodemann, U. 2010. Effects of probiotics on intestinal transport and epithelial barrier function. In: R. Ross, and V. Preedy, editors, Bioactive foods in promoting health: probiotics and prebiotics. Academic Press, Waltham, MA, USA. p. 303-333.

Markowiak, P., and K. Śliżewska. 2018. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 10:21. doi:10.1186/s13099-018-0250-0

Medellin-Peña, M.J., H. Wang, R. Johnson, S. Anand, and M.W. Griffiths. 2007. Probiotics affect virulence-related gene expression in Escherichia coli O157: H7. App. Environ. Microbiol. 73:4259-4267. doi:10.1128/AEM.00159-07

Mountzouris, K.C., C. Balaskas, I. Xanthakos, A. Tzivinikou, and K. Fegeros. 2009. Effects of a multi-species probiotic on biomarkers of competitive exclusion efficacy in broilers chal¬lenged with Salmonella enteritidis. Br. Poult. Sci. 50:467- 478. doi:10.1080/00071660903110935

Mookiah, S., C.C. Sieo, K. Ramasamy, N. Abdullah, and Y.W. Ho. 2014. Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J. Sci. Food. Agric. 94:341-348. doi:10.1002/jsfa.6365

Niba, A., J. Beal, A. Kudi, and P. Brooks. 2009. Bacterial fermentation in the gastro-intestinal tract of non-ruminants: influence of fermented feeds and fermentable carbohydrates. Trop. Anim. Health. Prod. 41:1393-1407. doi:10.1007/s11250-009- 9327-6

Patel, S., R. Shukla, and A. Goyal. 2015. Probiotics in valorization of innate immunity across various animal models. J. Funct. Foods 14:549-561. doi:10.1016/j.jff.2015.02.022

Reid, G. 2016. Probiotics: definition, scope and mechanisms of action. Best Pract. Res. Clin. Gastroenterol. 30:17-25. doi:10.1016/j.bpg.2015.12.001

Setlow, P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. App. Microbiol. 101:514-525. doi:10.1111/j.1365-2672.2005.02736.x

Shim, Y., S. Ingale, J. Kim, K. Kim, D. Seo, S. Lee, B. Chae, and I. Kwon. 2012. A multi-microbe probiotic formulation processed at low and high drying temperatures: effects on growth performance, nutrient retention and caecal microbiology of broilers. Br. Poult. Sci. 53:482-490. doi:10.1080/00071668.2012.690508

Siepert, B., N. Reinhardt, S. Kreuzer, A. Bondzio, S. Twardziok, G. Brockmann, K. Nöckler, I. Szabó, P. Janczyk, R. Pieper, and K. Tedin. 2014. Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets. Vet. Immunol. Immunopathol. 157:65-77. doi:10.1016/j.vetimm.2013.10.013

Skokovic-Sunjic, D. 2016. Clinical guide to probiotic supplements available in Canada: indications, dosage forms and clinical evidence to date. 2016 ed. International Scientific Association for Probiotics and Prebiotics, Sacramento, CA, USA. http://4cau4jsaler1zglkq3wnmje1.wpengine.netdna-cdn.com/wp-content/uploads/2016/01/clincial-guide-canada. pdf (accessed May 4, 2018).

Smolinska, S., D. Groeger, and L. O’Mahony. 2017. Biology of the microbiome 1: Interactions with the host immune response. Gastroenterol. Clin. North Am. 46(1):19-35. doi:10.1016/j.gtc.2016.09.004

Surendran, N.M., M.A. Amalaradjou, and K.A Venkitanarayanan. 2017. Antivirulence properties of probiotics in combating microbial pathogenesis. Adv. App. Microbiol. 98:1-29. doi:10.1016/bs.aambs.2016.12.001

Uyeno, Y., S. Shigemori, and T. Shimosato. 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 30:126-132. doi:10.1264/jsme2.ME14176

Yeoman, C.J., and B.A. White. 2014. Gastrointestinal tract microbiota and probiotics in production animals. Annu. Rev. Anim. Biosci. 2:469-486. doi:10.1146/annurev-animal-022513-114149

Yirga, H. 2015. The use of probiotics in animal nutrition. J. Probiotics Health 3:132. doi:10.4172/2329-8901.1000132

Zhang, Z., and I. Kim. 2014. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult. Sci. 93:364-370. doi:10.3382/ps.2013-03314

Zhang, L., L. Zhang, X. Zhan, X. Zeng, L. Zhou, G. Cao, A. Chen, and C. Yang. 2016. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. J. Anim. Sci. Biotechnol. 7:3. doi:10.1186/ s40104-016-0061-4

Published

2019-05-01

How to Cite

Molina, A. (2019). Probiotics and their mechanism of action in animal feed. Agronomía Mesoamericana, 30(2), 601–611. https://doi.org/10.15517/am.v30i2.34432