Phenotypic stability of genotypes Lolium sp. in the high tropic of Nariño, Colombia

Authors

  • Máryory Maricela Cadena-Guerrero Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)
  • Mario Augusto García-Dávila Universidad Nacional de Colombia
  • Edwin Castro Corporación Colombiana De Investigación Agropecuaria. CORPOICA https://orcid.org/0000-0001-9841-8242

DOI:

https://doi.org/10.15517/am.v30i2.34307

Keywords:

ryegrass, adaptability, AMMI, green fodder

Abstract

Introduction. The species of the Lolium genus represent an important component in the bovine feeding in several regions of Colombia, however, in the high tropic of Nariño, one of the main dairy basins of the country, there is little knowledge about the performance of the cultivars managed by the producers; there are no stability studies that allow us to know which of the cultivars offered in the market behave better in a specific location, which affects the farmers’ economy. Objective. The objective of this research was to determine the phenotypic stability of the yield of green forage (RFV) and dry matter (RMS) in ryegrass, in the dairy basin of the high tropic of Nariño. Materials and methods. Between 2016 and 2017, ten ryegrass genotypes were evaluated in Pasto, Cumbal, and Sapuyes. The experiments were established under a randomized complete block design with four repetitions. For the analysis of adaptability and stability of RFV and RMS, the model proposed by Eberhart and Russell, and the analysis of principal additives effects and multiplicative interactions (AMMI) were used. Results. The Tetralite II, Bóxer, Bestfor Plus, and Aubade genotypes had the highest green forage yields (7.52-8.34 t.ha.cut-1) and dry matter (1.29-1.37 t.ha.cut-1) in the three environments studied. With the Eberhart and Russell model, for RFV, these genotypes were classified as the best response in favorable and predictable environments, and by RMS they were also predictable, but Aubade and Bestfor Plus were classified with good response in all environments, and Bóxer and Tetralite II, with better response only in favorable environments. Conclusion. The AMMI model allowed to identify the Pasto municipality as the most favorable environment, and the Bóxer and Tetralite II genotypes as those with the best performing in this environment. 

Downloads

Download data is not yet available.

References

AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria). 2016. Mejoramiento de la oferta forrajera,

optimización de sistemas de alimentación y aseguramiento de la calidad e inocuidad de la leche en el trópico alto del departamento de Nariño. AGROSAVIA, Bogotá, COL.

Castrillón, D. 2014. Informe: Cuencas lecheras, motores de la producción nacional. Federación Colombiana de Ganaderos (Fedegán), COL. http://www.fedegan.org.co/noticias/informe-cuencas-lecheras-motores-de-la-produccion-nacional (consultado 07 abr. 2018).

Climate-Data.Org. 2018. Clima: Pasto, Cumbal y Sapuyes. Climate-Data.org https://es.climate-data.org/ (consultado 15 mar. 2018).

CIAT. 1982. Manual para la evaluación agronómica, red internacional de evaluación de pastos tropicales. CIAT, Cali, COL.

Damba, G. 2008. Evaluación de métodos para análisis de estabilidad en diferentes ambientes en genotipos de yuca (Manihot esculenta Crantz.). Tesis MSc., Universidad Nacional de Colombia, COL.

Eberhart, S., and W. Russell. 1966. Stability parameters for comparing varieties. Crops Sci. 6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

Elgersma, A. 1990. Genetic variation for seed yield in perennial ryegrass (Lolium perenne L.). Plant Breed. 105:117-125. doi:10.1111/j.1439-0523.1990.tb00464.x

Flores, D. 2010. Comparación de criterios de selección de híbridos experimentales de sorgo para grano (Sorghum bicolor L. Moench.) para su liberación a la producción comercial. Tesis Ph.D., Universidad Autónoma de Nuevo León, Nuevo León, MEX.

Frutos, M. 2011. Interacción genotipo - ambiente: GGE biplot y modelos AMMI. Tesis MSc., Universidad de Salamanca, ESP.

Gordón-Mendoza R., I. Camargo-Buitrago, J. Franco-Barrera, y A. González-Saavedra. 2006. Evaluación de la adaptabilidad y estabilidad de 14 híbridos de maíz, Azuero, Panamá. Agron. Mesoam. 17:189-199. doi:10.15517/am.v17i2.5159.

Ibáñez, M.A., M.M. Cavanagh, N.C. Bonamico, y M.A. Di-Renzo. 2006. Análisis gráfico mediante Biplot del comportamiento de híbridos de maíz. RIA 35(3):83-93.

Ibáñez, M.A., M.A. Di-Renzo, S.S. Samame, N.C. Bonamico, and M.M. Poverene. 2001. Genotype-environment interaction of lovegrass forage yield in the semi-arid region of Argentina. Arg. J. Agric. Sci. 137:329-336. doi:10.1017/S0021859601001423

Legarda-López, D., G. Benavides-Cuesta, y H. Ruiz-Erazo. 2015. Respuesta del pasto raigrás Aubade (Lolium sp.) a dosis de silicio en interacción con diferentes dosis de NPK. Biotecnol. Sector Agropecu. Agroind. 13(1):99-109.

López, J. 2009. Estudio de los recursos fitogenéticos del complejo Festuca - Lolium. Tesis Ph.D., Universidad de Santiago de Compostela, Santiago de Compostela, ESP.

Lozano-del-Río, A., V. Zamora-Villa, L. Ibarra-Jiménez, S. Rodríguez-Herrera, E. de-la-Cruz-Lázaro, y M. de-la-Rosa-Ibarra. 2009. Análisis de la interacción genotipo-ambiente mediante el modelo AMMI y potencial de producción de triticales forrajeros (X Triticosecale Wittm). Univ. Cienc. 25(31):81-92.

Lozano-Ramírez, A., A. Santacruz-Varela, F. San-Vicente-García, J. Crossa, J. Burgueño, y J. Molina-Galán. 2015. Modelación de la interacción genotipo × ambiente en rendimiento de híbridos de maíz blanco en ambientes múltiples. Rev. Fitotec. Mex. 38:337-347.

Mejía, J. 2014. Evaluación de la interacción genotipo por ambiente para variedades transgénicas de algodón Gossypium hirsutum L. Tesis M.Sc., Universidad Nacional de Colombia, Palmira, COL.

Méndez, D.G., K. Frigerio, M. Costa, J. Mattera, N. Romero, L. Fontana, L. Romero, P. Barbera, A. Ré, F. Moreyra, J. Otondo, M. Cicchino, M. Bailleres, G. Melani, J. Esquiaga, J. Lavandera, J.J. Gallego, y F. Neira. 2014. Interacción genotipo × ambiente y su asociación con variables climáticas en cultivares de Lolium multiflorum lam. Argentina. En: D. Méndez, y A. Otero, editores, Memoria Técnica 2013-2014. INTA, Buenos Aires, ARG. p. 113-116.

Namorato, H, G. Vieira, L. Vagno, L. Rodrigues, R. Oliveira, and E. Mantovani. 2009. Comparing biplot multivariate analyses with Eberhart and Russell’ method for genotype x environment interaction. Crop Breed. Appl. 9:299-307.

Vallejo, F., y E. Estrada. 2013. Mejoramiento genético de plantas. 2da ed. Universidad Nacional, Palmira, COL.

Vargas, E., J. Vargas, y D. Baena. 2016. Análisis de estabilidad y adaptabilidad de híbridos de maíz de alta calidad proteica en diferentes zonas Agroecológicas de Colombia. Acta Agron. 65:72-79. doi:10.15446/acag.v65n1.43417

Vega, P. 1988. Introducción a la teoría de la genética cuantitativa con especial referencia al mejoramiento de plantas. Universidad Central de Venezuela, Caracas, VEN.

Published

2019-05-01

How to Cite

Cadena-Guerrero, M. M., García-Dávila, M. A., & Castro, E. (2019). Phenotypic stability of genotypes Lolium sp. in the high tropic of Nariño, Colombia. Agronomía Mesoamericana, 30(2), 483–495. https://doi.org/10.15517/am.v30i2.34307

Most read articles by the same author(s)