Productive performance of seven soybeans genotypes in acid soils of the Colombian Orinoquía

Authors

DOI:

https://doi.org/10.15517/am.v31i1.34440

Keywords:

Glycine max, adaptation, genotype environment interaction, acid soils, grain yield

Abstract

Introduction. In Colombia, soy is one of the main raw materials for the production of feed for animals, demand that was only satisfied in 7% in 2007. In the country, this legume is only produced in the Orinoquía region, as part of the rice-corn-soybean rotation system, and its current commercial production is associated with the Soyica P-34 (Altillanura) and Corpoica Superior 6 (Piedemonte) varieties, which are susceptible to Cercospora sojina, which compromise yield. Objetive. The objective of this work was to identify soy genotypes with specific adaptation for acid soils oxisoles (Altillanura) and inceptisoles (Piedemonte) with superior grain yield a lower affectation by Cercospora sojina K. Hara. Materials and methods. An agronomic evaluation test (PEA) consisting of seven genotypes and two commercial varieties was carried out as controls in six localities located in two sub-regions of the Orinoquía (Altillanura and Piedemonte) during 2011, in a randomized complete block design (DBCA) and four repetitions. The AMMI model and its biplot graph were used to determine the phenotypic stability with the variable grain yield. Results. The AMMI model explained 81.8% of the genotype x locality interaction with the first two main components, the biplot graph allowed to identify three soy genotypes candidates for variety, two with specific adaptation for the Altillanura (L-062 and L-103), and one for Piedemonte (L-189). These genotypes showed higher grain yields by 8% and a lower affectation by Cercospora sojina in relation to commercial witnesses. Conclusion. The study allowed three soy genotypes to be selected and registered as commercial varieties in the National Cultivation System of the ICA as Corpoica Guayuriba (L-189), Corpoica Achagua (L-062) and Corpoica Iraca (L-103), according to their specific adaptation by sub-region.

Downloads

Download data is not yet available.

Author Biographies

Samuel Caicedo-Guerrero, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA

Investigador máster 

Meta, Villavicencio

Yuli Stephani Tibocha-Ardila, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA

Profesional de apoyo a la investigación

Meta, Villavicencio

Luis Fernando Campuzano-Duque, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA

Investigador phD 

Meta, Villavicencio

Deisy Lorena Flórez-Gómez, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA

Profesional de apoyo a la investigación

Meta, Puerto López

References

Akem, C.N., and K.E. Dashiell. 1994. Effect of planting date on severity of frogeye leaf spot and grain yield of soybeans. Crop Protec. 13:607-610. doi:10.1016/0261-2194(94)90006-X

Balboa, G.R., V.O. Sadras, and I.A. Ciampitti. 2018. Shifts in soybean yield, nutrient uptake, and nutrient stoichiometry: a historical synthesis-analysis. Crop Sci. 58:43-54. doi:10.2135/cropci2017.06.0349

Carmona, M.A., F.J. Sautua, and E.M. Reis. 2015. Soybean frogeye leaf spot (Cercospora sojina): First economic damage threshold determination. Adv. Appl. Agric. Sci. 3(5):1-7.

Cattelan, A.J., and A. Dall”Agnol. 2018. The rapid soybean growth in Brazil. OCL 25(1):18-25. doi:10.1051/ocl/2017058

Crossa, J., P. Cornelius, and W. Yan. 2002. Biplots of linear-bilinear models for studying crossover genotype environment interaction. Crop. Sci. 42:619-633. doi:10.2135/cropsci2002.0619

Dashiell, K.E., and C.N. Akem. 1991. Yield losses in soybeans from frogeye leaf spot caused by Cercospora sojina. Crop Protec.10: 465-468. doi:10.1016/S0261-2194(91)80134-2

De-Bruin, J.L., and P. Pedersen. 2009. Growth, yield and yield component changes among old and new soybeans cultivars. Agron. J. 101:124-130. doi:10.2134/agronj2008.0187

FAO. 2017. Colecciones de bases de datos de FAOSTAT. FAO, Roma, ITA. http://faostat.fao.org (consultado abr. 2019).

FENALCE (Federación Nacional de Cultivadores de Cereales y Leguminosas). 2018. Situación del sector cereales, leguminosas y soja. Departamento de Información Económica y Estadística. FENALCE, COL. http://www.fenalce.org/nueva/plantillas/arch_down_load/Situacion_del_Sector_III_Trimestre_2017.pdf (consultado feb. 2018).

Gabriel, K. 1971. The biplot graphic of matrices with application to principal component analysis. Biometrics 58:453-467. doi:10.2307/2334381

Goettel, W., E. Xia, R. Upchurch, M.L. Wang, and P. Chen. 2014. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genomics 15:299. doi:10.1186/1471-2164-15-299

ICA (Instituto Colombiano Agropecuario). 2000. Resolucion 1985. ICA, COL. https://www.ica.gov.co/getattachment/1e3dbbcd-e900-4c3d-9474-0c98dfbf5f48/2000R1985.aspx (consultado abr. 2019).

Khati, P., K.S. Hooda, and S.K. Shukla. 2007. Screening of soybean genotypes against frogeye leaf spot. Indian Phytopathol. Soc. 60(1):121-122.

Matías, F., J.A. Gerde, and J.L. Rotundo. 2016. Genetic gain of soybean in maturity groups III to V in Argentina from 1980 to 2015 Crop Science 56:3066-3077. doi:10.2135/cropcsi.2016.04.0214

Mengistu, A., H. Kelly, N. Bellaloui, P.R. Arelli, y B. Lin. 2018. Cuantificación de los efectos de los fungicidas y la labranza sobre la severidad de Cercospora sojina y el rendimiento de la soja. Prog. Sanidad Veg.19:226-232.

Mwase, W.F., and R.G. Kapooria. 2001. Incidence and severity of frogeye leaf spot and associated yield losses in soybeans in agroecological zone II of Zambia. Mycopathologia 149:73-78. doi:10.1023/A:1007126225457

Phansak, P., W. Soonsuwon, D.L. Hyten, Q. Song, and P. B. Cregan. 2016. Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. G3 (Bethesda) 6:1635-1648. doi:10.1534/g3.116.027656

Ploper, L.D., V. Gonzalez, R. Galvez, M. Devani, y F. Ledesma. 2000. La mancha ojo de rana. Otra enfermedad limitante del cultivo de la soja. Avance Agroind. 21(2):9-12.

Riveros, S. 1983. La orinoquía colombiana. Bol. Soc. Geográf. Colomb. 118(33):1-9.

Rueda-Agudelo, S.L., y A.M. Giraldo-Mejía. 2018. Energía metabolizable del grano de soya integral en pollo de engorde. Rev. Vet. Zootec. 12(1):84-104. doi:10.17151/vetzo.2018.12.1.7

SAS Institute Inc. 2016. User´s guide Version 9.4. SAS Institute Inc., Cary, NC, USA.

Sungwoo, L., V. Kyujung, M. Sung, R. Nelson, J. LaMantla, L.H. MacHale, and M.A. Rouf Mlan. 2019. Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV. Theor. Appl. Genet. 132:1639-1659. doi.org/10.1007/s00122-019-03304-5

Valencia, R., H. Carmen, H. Vargas, y G. Arrieta. 2006. Variedades mejoradas de soya para zonas productoras actuales y potenciales de Colombia. Innov. Cambio Tecnol. 4(2-3):7-15.

Valencia R., y G. Ligarreto. 2010. Mejoramiento genético de la soya (Glycine max [L.] Merril) para su cultivo en la Altillanura colombiana: una visión conceptual prospectiva. Agron. Colomb. 28:155-163.

Xavier, W.D., J.V. Silva, C.M. Guimaraes, J.L. Ferreira, and T.A. Turozi. 2019. Use of Cooper-Based pestices to control fungal diseases of soyben in Northern Brazil. J. Exp. Agric. Int. 33(2):1-10. doi:10.9734/JEAI/2019/v33i230137

Published

2020-01-01

How to Cite

Caicedo-Guerrero, S., Tibocha-Ardila, Y. S., Campuzano-Duque, L. F., Flórez-Gómez, D. L., & Arguelles-Cardenas, J. (2020). Productive performance of seven soybeans genotypes in acid soils of the Colombian Orinoquía. Agronomía Mesoamericana, 31(1), 59–68. https://doi.org/10.15517/am.v31i1.34440