Physico-chemical analysis of fillets of the exotic species Hemiancistrus aspidolepis in Costa Rica

ANÁLISIS FÍSICO-QUÍMICO DE FILETES DE Hemiancistrus aspidolepis

Authors

DOI:

https://doi.org/10.15517/am.v32i1.39035

Keywords:

proximal analysis, food security, wild fish, animal protein

Abstract

Introduction. When invasive animal species are introduced into an ecosystem that is not their natural range, their control could be determined by the possibility of using these organisms for human consumption or other management alternatives. Objective. To determine the physical-chemical characteristics of the H. aspidolepis fillet, and to compare its nutritional quality with fish species for human consumption of marine origin and continental waters. Materials and methods. 109 fish were collected in three Wildlife Refuges in Costa Rica, during 2017, they were weighed fresh and without viscera, in addition each fillet, viscera, and carcass were weighed. A proximal analysis was performed to determine the content of fatty acids, minerals, and mercury. Results. The average length of the collected individuals was 25.35 cm and the average weight was 162.55 g, of which 8.2 % were viscera, and 19.02 % were muscle. For each sample, there were obtained averages per 100 g of: 80.69 g of water, 17.64 g of protein and 73.40 kcal of energy. The levels of trans fat and total carbohydrates were 0.01 and 0.55 g 100 g-1, respectively. The minerals per 100 g were 281.81 mg of potassium, 28.87 mg of sodium, and 1.23 mg of iron. The fatty acids in greater quantity were: palmitic (23.64 %), stearic (9.43 %), and tricosanoic (7.26 %). The total mercury level was less than 0.15 ppm. Conclusions. The collected individuals did not have similar sizes and weight percentages of fillets to those used for market and human consumption. H. aspidolepis has similarities in proximal content, fatty acids, and minerals with respect to some fish for human consumption; the contents of proteins and lipids make it suitable for consumption and commercialization.

Downloads

Download data is not yet available.

References

Aguirre-Muñoz, A., Mendoza-Alfaro, R., Ponce-Bernal, H. A., Arriega-Cabrera, L., Campos-Gonzáles, E., Contretas-Balderas, S., Gutiérrez, M. E., Espinoza-García ,F. L., Fernández-Salas, L., Galaviz-Silva, L., García de León, F. J., Lazcano-Villareal, D., Martínez-Jiménez, M., Meave del Castillo, M. E., Medellín, R. A., Naranjo-García, E., Olivera-Carrasco, M. T., Pérez-Sandi, M., Rodríguez-Almaraz, G., Salgado Maldonado, G., et al. (2009). Especies exóticas invasoras: impactos sobre las poblaciones de flora y fauna, los procesos ecológicos y la economía. En R. Dirzo, R. González, & I. J. March (Eds.), Capital natural de México (vol. II., pp. 277–318). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.biodiversidad.gob.mx/v_ingles/country/pdf/CapNatMex/Vol%20II/II06_Especies%20exoticas%20invasoras_Impactos%20sobre%20las%20pobla.pdf

Angulo, A., Garita-Alvarado, C., Bussing, W., & López, M. (2013). Annotated checklist of the freshwater fishes of continental and insular Costa Rica: additions and nomenclatural revisions. Check List, 9(5), 987–1019. https://doi.org/10.15560/9.5.987

Association of Official Analytical Chemists. (2019). Official methods of analysis of AOAC International (21st ed.). Vol. 1. http://www.eoma.aoac.org/

Begum, M., Akhter, T., & Minar, M. H. (2012). Analysis of the proximate composition of domesticated pangus (Pangasius hypophthalmus) in laboratory condition. Journal of Environmental Science and Natural Resources, 5(1), 69–74. https://doi.org/10.3329/jesnr.v5i1.11555

Benitez-Hernández, A., Hernández, C., Ibarra-Castro, L., Sánchez-Gutiérrez, Y., & Gaxiola, G. (2017). Efecto de diferentes niveles de proteína y carbohidratos en juveniles de pargo flamenco Lutjanus guttatus sobre la composición proximal y parámetros hematológicos. World Aquaculture Society. Obtenido 14 jul. 2009 de https://www.was.org/meetings/ShowAbstract.aspx?Id=52379.

Blackburn, T. M., Pysek, P., Bacher, S., Carlton, J., Duncan, R., Jarosik, V., Wilson, J., & Richardson, D. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26(7), 333–339. https://doi.org/10.1016/j.tree.2011.03.023

Bussing, W. (2002). Peces de aguas continentales de Costa Rica (2da ed.). Editorial de la Universidad de Costa Rica.

Carranza, E. (2018). Rendimiento corporal de especies de peces nativos del Golfo de Fonseca de Honduras. Revista Ciencia y Tecnología, 23,46–59. https://doi.org/10.5377/rct.v0i23.6860

Carrillo, L., Dalmau, J., Román, J., Solà, R., & Pérez, F. (2011). Grasas de la dieta y salud cardiovascular. Atención Primaria, 43(3), 157.e1–157.e16. https://doi.org/10.1016/j.aprim.2010.12.003

Castillo, D. (2018). Abundancia, relaciones longitud-peso y aspectos reproductivos de la tilapia (Oreochromis niloticus) y del pleco (Hypostomus cf. aspidolepis) en el Río Sabogal, cuenca del Río Frío, vertiente atlántica norte de Costa Rica [Tesis Lic. Universidad de Costa Rica]. Repositorio SIBDI-UCR. http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/6434

Castro, M. I., Maafs, A. G., & Galindo, C. (2013). Perfil de ácidos grasos de diversas especies de pescados consumidos en México. Revista de Biología Tropical, 61(4), 1981–1998.

Chaijan, M., Jongjareonrak, A., Phatcharat, S., Benjakul, S., & Rawdkuen, S. (2010). Chemical compositions and characteristics of farm raised giant catfish (Pangasianodon gigas) muscle. Food Science Technology, 43(3),452–457. https://doi.org/10.1016/j.lwt.2009.09.012

Covain, R., & Fisch-Muller, S. (2007). The genera of the Neotropical armored catfish subfamily Loricariinae (Siluriformes: Loricariidae): a practical key and synopsis. Zootaxa, 1462, 1–40. https://doi.org/10.11646/zootaxa.1462.1.1

Deines, A. M. (2013). Environmental change and tradeoffs in freshwater ecosystem services: Nile Tilapia (Oreochromis niloticus) introduction to the Kafue River, Zambia [Ph.D. Diss., University of Notre Dame]. https://curate.nd.edu/show/s4655d8934f

Desta, D. T., Zello, G., Alemayehu, F. R., Estfanos, T. K., Zatti, K., & Drew, M. (2019). Proximate analysis of Nile Tilapia, (Oreochromis niloticus), Fish fillet harvested from farmers pond and Lake Hawassa, Southern Ethiopia. International Journal for Research and Development in Technology, 11(1), 94–99.

Food and Agriculture Organization. (1999). El Pescado Fresco: su calidad y cambios de su calidad. http://www.fao.org/3/v7180s/v7180s00.htm#Contents

Food and Agriculture Organization. (2007). Meat processing technology for small- to medium-scale producers. http://www.fao.org/ag/againfo/themes/es/meat/backgr_composition.html

Food and Agricultural Organization, & World Health Organization. (2015). Codex Alimentaruis: Norma General para los contaminantes y las toxinas presentes en los alimentos y piensos. http://www.fao.org/input/download/standards/17/CXS_193s_2015.pdf

Fonseca, R., & Vargas, P. (2018). Estudio de factibilidad del aprovechamiento económico de una especie invasora Hypostomus plecostomus en el humedal de Caño Negro, Costa Rica. Journal of Marine and Coastal Science, 10(2), 31–49. https://doi.org/10.15359/revmar.10-2.2

Fonseca-Rodríguez, C., & Chavarría-Solera, F. (2017). Composición proximal en algunas especies de pescado y mariscos disponibles en el pacífico costarricense. Uniciencia, 31(1), 23–28. https://doi.org/10.15359/ru.31-1.3

Gibbs, M. A., Shields, J. H., Lock, D. W., Talmadge, K. M., & Farrell, T. M. (2008). Reproduction in an invasive exotic catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida, USA. Journal of Fish Biology, 73(7), 1562–1572. https://doi.org/10.1111/j.1095-8649.2008.02031.x

Guerrero, T. (2016). Propuesta base para la estrategia de manejo y control local del pez diablo en el Refugio Nacional de Vida Silvestre mixto Caño Negro, Costa Rica [Tesis MSc., CATIE]. Repositorio CATIE. http://hdl.handle.net/11554/8604

Hernández, M. (2004). Recomendaciones nutricionales para el ser humano. Revista Cubana de Investigaciones Biomédicas, 23(4), 266-292.

Hoover, J. J., Murphy, C. E., & Killgore, J. (2014). Ecological impacts of suckermouth catfishes (Loricariidae) in North America: a conceptual model. ANSRP Bulletin, 14(1), 1–20.

Howard, G. (1999). Especies invasoras y humedales. Ramsar. https://www.ramsar.org/sites/default/files/documents/cop7-docs/NON-RESRECS%20FINAL/COP7%2024S.pdf

Izquierdo-Córser, P., Torres-Ferrari, G., Barbosa-de-Martínez, Y., Márquez-Salas, E., & Allara-Cagnasso, M. (2000). Análisis proximal, perfil de ácidos grasos, aminoácidos esenciales y contenido de minerales en doce especies de pescado de importancia comercial en Venezuela. Archivos Latinoamericanos de Nutrición, 50(2),187–194.

Njinkoue, J. M., Gouado, I., Tchoumbougnang, F., Ngueguim, J. H. Y., Ndinteh, D. T., Fomogne-Fodjo, C. Y., & Schweigert, F. J. (2016). Proximate composition, mineral content and fatty acid profile of two marine fishes from Cameroonian coast: Pseudotolithus typus (Bleeker, 1863) and Pseudotolithus elongatus (Bowdich, 1825). NFS Journal, 4, 27–31. https://doi.org/10.1016/j.nfs.2016.07.002

Nico, L. G., Jelks, H. L., & Tuten, T. (2009). Non-native suckermouth armored catfishes in Florida: description of nest borrows and burrow colonies with assessment of shoreline conditions. ANSRP Bulletin, 9(1), 1–30.

Orban, E., Nevigato, T., Lena, G. D., Masci, M., Casini, I., Gambelli, L., & Caproni, R. (2008). New trends in the seafood market. Sutchi catfish (Pangasius hypophthalmus) fillets from Vietnam: Nutritional quality and safety aspects. Food Chemistry, 110(2), 383–389. https://doi.org/10.1016/j.foodchem.2008.02.014

Oliveira, V. D., Vieira, C., Dessinoni, M., Pimentel, R., Fonseca, R., & Solis, L. (2015). Using morphometric variables in evaluations of body of fish yields. Journal of Veterinary Medicine and Research, 2(4), 1032–1036.

Olapade, O. A., Taiwo, I. O., Lamidi, A. A., & Awonaike, O. A. (2016). Proximate composition of Nile Tilapia (Oreochromis niloticus) and Tilapia Hybrid (Red Tilapia) from Oyan Lake, Nigeria. Bulletin of University of Agricultural Science and Veterinary Medicine Food Science and Technology, 73(1), 19–23. https://doi.org/10.15835/buasvmcn-fst:11973

Proyecto Humedales de Sistema Nacional de Áreas de Conservación – Programa de Naciones Unidad para el Desarrollo - Global Enviromental Facility. (2018). Ecosistemas Vegetales del Complejo de Humedales de Caño Negro, Los Chiles, Costa Rica. https://labmeh.catie.ac.cr/wp-content/uploads/2018/06/Ecosistemas-de-Ca%C3%B1o-Negro_2018-1.pdf

Ruíz, I. (2016). Metodologías analíticas utilizadas actualmente para la determinación de mercurio en músculo de pescado. Revista Pensamiento Actual, 16(26), 113–122. https://doi.org/10.15517/PA.V16I26.25187

Santaella, M., Graciá, C. M., Peragio, M. J., & Santaella, J. (2012). Evaluación sensorial de diferentes presentaciones comerciales de dorada (Sparus aurata) de acuicultura. Anales de Veterinaria de Murcia, 28, 85–96. https://doi.org/10.6018/j/188751

Shehawy, S. M. E., Gab-Alla, A. A., & Mutwally, H. M. A. (2016). Proximate and elemental composition of important fish species in Makkah central fish market, Saudi Arabia. Food and Nutrition Science, 7(6), 429–439. https://doi.org/10.4236/fns.2016.76044

United States Environmental Protection Agency. (2018). EPA-FDA Fish Advice: Technical Information. United States Environmental Agency. https://www.epa.gov/fish-tech/epa-fda-fish-advice-technical-information

Undeland, I., Ellegard, L., & Sandberg, A. S. (2004). Fish and cardiovascular health. Scandinavian Journal of Nutrition, 48(3),119-130. https://doi.org/10.1080/11026480410000427

Varlık, C., Erkan, N., & Baygar, T. (2004). Su Ürünleri besin bileşimi. In: C. Varlık, (Ed.), Su Ürünleri İşleme Teknolojisi (Vol. 1, pp. 1-45). Istanbul Üniversitesi Yayın.

Published

2021-01-01

How to Cite

Peña-Navarro, N., & Vargas-Alpízar, P. (2021). Physico-chemical analysis of fillets of the exotic species Hemiancistrus aspidolepis in Costa Rica: ANÁLISIS FÍSICO-QUÍMICO DE FILETES DE Hemiancistrus aspidolepis. Agronomía Mesoamericana, 32(1), 63–76. https://doi.org/10.15517/am.v32i1.39035