Water hyacinth (Eichhornia crassipes): A review
DOI:
https://doi.org/10.15517/am.v33i1.44201Keywords:
Eichhornia crassipes, hydrophytic plants, invasive speciesAbstract
Introduction. The water lily (Eichhornia crassipes) is a free-floating hydrophytic plant of the Pontederiaceae family. It is one of the aquatic plants with the best reproduction and growth rate, so it spreads and forms mats that constrict submerged and floating native plants, reduces the entry of light into bodies of water and decreases the dissolved oxygen in the water. Objective. To carry out a comprehensive review of the water lily that allows the scientific community a better understanding of an invasive species, as well as the effects it causes on the ecosystem. Development. The invasive capacity of this plant endangers various ecosystems, as it takes advantage of nutrient-rich waters. In addition, the dense floating colonies cause the oxygen content to drop to zero below its mantle, causing damage to the ecosystems. Conclusions. The water lily is one of the most invasive aquatic plants in the world, causing ecological and socio-economic effects. This plant has been used as a phytoremediator, in the removal of organophosphates, which indicates that it can be used to clean sewage. Furthermore, it can be used in the production of ethanol, paper, compost, biogas, human food, animal fodder, fiber, and in the extraction of volatile fatty acids.
Downloads
References
Abdel-Sabour, M. F. (2010). Water hyacinth: available and renewable resource. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(11), 1746–1759. https://www.researchgate.net/publication/258857392_Water_hyacinth_Available_and_renewable_resource
Adekoya, B. B., Ugwuzor, G. N., Olurin, K. B., Sodeinde, O. A., & Ekpo, O. A. (1993, November 16-20). A comparative assessment of the methods of control of water hyacinth infestation with regards to fish production [Conference presentation]. 10th Annual Conference of the Fisheries Society of Nigeria (FISON), Abeokuta, Nigeria. http://aquaticcommons.org/3513/
Anudechakul, C., Vangnai, A., & Ariyakanon, N. (2015). Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. International Journal of Phytoremediation, 17(7), 678–685. https://doi.org/10.1080/15226514.2014.964838
Babu, R. M., Sajeena, A., & Seetharaman, K. (2004). Solid substrate for production of Alternaria alternata conidia: a potential mycoherbicide for the control of Eichhornia crassipes (water hyacinth). Weed Research, 44(4), 298–304. https://doi.org/10.1111/j.1365-3180.2004.00403.x
Bhattacharya, A., & Pawan, K. (2010). Water hyacinth as a potential biofuel crop. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122. https://www.researchgate.net/publication/228363916_Water_hyacinth_as_a_potential_biofuel_crop
Charudattan, R. (2001, November 12). Are we on top of aquatic weeds? Weed problems, control options, and challenges [Conference presentation]. International symposium on the World’s Worst Weeds. British Crop Protection Council, Brighton, United Kingdom. https://www.researchgate.net/publication/228964598_Are_we_on_top_of_aquatic_weeds_Weed_problems_control_options_and_challenges
Chigbo, F. E., Smith, R. W., & Shore, F. (1982). Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes. Environmental Pollution Series A, Ecological and Biological, 27(1), 31–36. https://doi.org/10.1016/0143-1471(82)90060-5
Coetzee, J. A., Byrne, M. J., & Hill, M. P. (2007). Predicting the distribution of Eccritotarsus catarinensis, a natural enemy released on water hyacinth in South Africa. Entomologia Experimentalis Applicata, 125, 237–247. https://doi.org/10.1111/j.1570-7458.2007.00622.x
Coetzee, J. A., Jones, R. W., & Hill, M. P. (2014). Water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae), reduces benthic macroinvertebrate diversity in a protected subtropical lake in South Africa. Biodiversity and Conservation, 23, 1319–1330. https://doi.org/10.1007/s10531-014-0667-9
Fleming, J. P., & Dibble, E. D. (2015). Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia, 746(1), 23–37. https://doi.org/10.1007/s10750-014-2026-y
Gaertner, M., Larson, B. M. H., Irlich, U. M., Holmes, P. M., Stafford, L., Van Wilgen, B., & Richardson, D. (2016). Managing invasive species in cities: A framework from Cape Town, South Africa. Landscape and Urban Planning, 151, 1–9. https://doi.org/10.1016/j.landurbplan.2016.03.010
Gajalakshami, S., Ramasamy, E. V., & Abbasi, S. A. (2002). Vermicomposting of different forms of water hyacinth by the earthworm Eudrilus euginea, Kinburg. Bioresource Technology, 82(2), 165–169. https://doi.org/10.1016/S0960-8524(01)00163-8
Gakwavu, R. J., Sekemo, B. C., & Nhapi, I. (2012). Zinc and chromium removal mechanisms from industrial wastewater by using water hyacinth, Eichhornia crassipes (mart.) Solms. Applied Ecology and Environmental Research, 10(4), 493–502. https://doi.org/10.15666/aeer/1004_493502
Ganesh, S., Ramasamy, E. V., Gajalakshmi, S., & Abbasi, S. A. (2005). Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochemical Engineering Journal, 27(1), 17–23. https://doi.org/10.1016/j.bej.2005.06.010
Ganguly, A., Chatterjee, P. K., & Dey, A. (2012). Studies on ethanol production from water hyacinth. A review. Renewable and Sustainable Energy Reviews, 16(1), 966–972. https://doi.org/10.1016/j.rser.2011.09.018
Gao, L., & Li, B. (2004). The study of a specious invasive plant, water hyacinth (Eichhornia crassipes): Achievements and challenges. Chinese Journal of Plant Ecology, 28(6), 735–752. https://doi.org/10.17521/cjpe.2004.0097
Gibbons, M., Gibbons, H., & Sytsma, M. (1994). A Citizen’s manual for developing integrated aquatic vegetation management plans. Washington State Department of Ecology. http://www.ecy.wa.gov/programs/wa/plants/management/manual/index.html
Giraldo, E., & Garzon, A. (2002). The potential for water hyacinth to improve the quality of Bogota River water in the Muña Reservoir: comparison with the performance of waste stabilization ponds. Water Science Technology, 45(1), 103–110. https://doi.org/10.2166/wst.2002.0014
Gopal, B. (1987). Aquatic plant studies 1. Water Hyacinth. Elsevier Publishing. https://www.cabdirect.org/cabdirect/abstract/19870701831
Gopalakrishnan, A., Rajkumar, M., Sun, J., Parida, A., & Venmathi Maran, B. A. (2011). Integrated biological control of water hyacinths, Eichhornia crassipes by a novel combination of grass carp, Ctenopharyngodon idella (valenciennes, 1844), and the weevil, Neochetina spp. Chinese Journal of Oceanology and Limnology, 29(1), 162–166. https://doi.org/10.1007/s00343-011-0101-z
Greenfield, B. K., Siemerin, G. S., Andrews, J. C., Rajan, M., Andrews S. P., & Spencer, D. F. (2007). Mechanical shredding of water hyacinth (Eichhornia crassipes): Effects on water quality in the Sacramento-San Joaquin river delta, California. Estuaries and Coasts, 30(4), 627–640. https://doi.org/10.1007/BF02841960
Gunnarsson, C. C., & Petersen, C. M. (2007). Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Management, 27(1), 117–129. https://doi.org/10.1016/j.wasman.2005.12.011
Gutierrez E., Arreguin F., Huerto R., & Saldana P. (1994). Aquatic weed control. International Journal of Water Resources Development, 10(3), 291–312. https://doi.org/10.1080/07900629408722631
Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., & Kats, L. B. (2015). Aquatic invasive species: challenges for the future. Hydrobiologia, 750, 147–170. https://doi.org/10.1007/s10750-014-2166-0
Heard, T. A., & Winterton, S. L. (2000). Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. Journal of Applied Ecology, 37, 117–127. https://doi.org/10.1046/j.1365-2664.2000.00480.x
Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potencial consequences of climate chance for invasive species. Conservation Biology, 22(3), 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x
Hunt, R. J., & Christiansen, I. H. (2000). Understanding dissolved oxygen in streams. Information kit. CCRC Sustainable Sugar Production.
Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). Journal of Applied Sciences and Environmental Management, 14(2), 43–49. https://doi.org/10.4314/jasem.v14i2.57834
Kateregga, E., & Sterner, T. (2009). Las poblaciones de peces del lago Victoria y los efectos del Jacinto de agua. The Journal of Environment & Development, 18(1), 62–78. https://doi.org/10.1177/1070496508329467
Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A, Abdul, Q., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(2), 301–309. https://doi.org/10.1016/j.ecoenv.2008.02.024
Khanna, S., Santos, M., Ustin, S., & Haverkamp, P. (2011). An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. International Journal of Remote Sensing, 32, 1067–1094. https://doi.org/10.1080/01431160903505328
Malik, A. (2007). Environmental challenge vis a vis opportunity: the case of water hyacinth. Environment International, 33(1), 122–138. https://doi.org/10.1016/j.envint.2006.08.004
Mangas-Ramírez, E., & Elías-Gutiérrez, M. (2004). Effect of mechanical removal of water hyacinth (Eichhornia crassipes) on the water quality and biological communities in a Mexican reservoir. Aquatic Ecosisten & Management, 7(1), 161–168. https://doi.org/10.1080/14634980490281597
March-Mifsut, I. J., & Martínez-Jiménez, M. (2007). Especies invasoras de alto impacto a la biodiversidad. Prioridades en México. Instituto Mexicano de Tecnología del Agua. http://repositorio.imta.mx/handle/20.500.12013/1619
Martyn, R. D., & Freeman, T. E. (1978). Evaluation of Acremonium zonatum as a potential biocontrol agent of water hyacinth. Plant Disease Reporter, 62(7), 604–608. https://books.google.com.mx/books?hl=es&lr=&id=aAz0AAAAMAAJ&oi=fnd&pg=PA604&dq=Martyn,+RD.+and+Freeman,+TE.+1978&ots=s4HBI02ViX&sig=_-SsjwmWt3zv3kwlKKCivmnbFXw&redir_esc=y#v=onepage&q&f=false
Mayo, A. W., & Hanai, E. E. (2017). Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Physics and Chemistry of the Earth, Parts A/B/C, 100, 170–180. https://doi.org/10.1016/j.pce.2016.10.016
Meerhoff, M., Mazzeo, N., Moss, B., & Rodriguez-Gallego, L. (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology, 37, 377–391. https://doi.org/10.1023/B:AECO.0000007041.57843.0b
Mukhopadyay, S. K., & Hossain, A. (1990). Management and utilization of water hyacinth vegetation as natural resource in India for the benefit of agriculture. Indian Journal of Agronomy, 35(1–2), 218–223. https://www.cabdirect.org/cabdirect/abstract/19912310230
Nath, A., Sudip, C., & Chiranji, B. (2013). Bioadsorbtion of industrial dyes from aqueous solution onto water hyacinth (Eichornia crassipes): Equilibrium, kinetic, and sorption mechanism study. Desalination and water treatment, 52(7–9), 1484–1494. https://doi.org/10.1080/19443994.2013.787028
Ndimele, P. E., & Ndimele, C. C. (2013). Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms). International Journal of Environmental Studies, 70(2), 241–258. https://doi.org/10.1080/00207233.2013.771503
Nesslage, G. M., Wainger, L. A., Harms, N. E., & Cofrancesco, A. F. (2016). Quantifying the population response of invasive water hyacinth, Eichhornia crassipes, to biological control and winter weather in Louisiana, USA. Biological Invasions, 18(7), 2107–2115. https://doi.org/10.1007/s10530-016-1155-9
Parker, I. M., Simberloff, D., Lonsdale, W. M., Lonsdale, W. M., Goodel, K., Wonham, M., Kareiva, P. M., Williamson, M., Von Holle, B., Moyle, P. B., Byers, J. E., & Goldwasser, L. (1999). Impact: Toward a framework for understanding the ecological effects of invaders. Biological Invasions, 1, 3–19. https://doi.org/10.1023/A:1010034312781
Patel, S. (2012). Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews Environment Science of Biotechnology, 11, 249–259. https://doi.org/10.1007/s11157-012-9289-4
Perna, C., & Burrows, D. (2005). Improved dissolved oxigen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River flood plain. Australia, Marine Pollution Bulletin, 51(1–4), 138–148. https://doi.org/10.1016/j.marpolbul.2004.10.050
Pinto-Coelho, R. M., & Greco, M. K. B. (1999.) The contribution of water hyacinth (Eichhornia crassipes) and zooplankton to the internal cycling of phosphorus in the eutrophic Pampulha Reservoir, Brazil. Hydrobiologia, 411, 115–127. https://doi.org/10.1023/A:1003845516746 .
Poi-de-Neiff, A. (2003). Macroinvertebrates living on Eichhornia azurea Kunth in the Paraguay River. Acta Limnológica Brasileira, 15(1), 55–63. https://www.icmbio.gov.br/esectaiama/images/stories/Macroinvertebrates_living_on_Eichhornia_azurea_Kunth.pdf
Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate chance on aquatic invasive species. Conservation Biology, 22(3), 521–533. https://doi.org/10.1111/j.1523-1739.2008.00950.x
Rocha-Ramírez, A., Ramírez-Rojas, A., Chávez-López, R., & Alcocer, J. (2007). Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal system, Veracruz, Mexico. Aquatic Ecology, 41, 319–333. https://doi.org/10.1007/s10452-006-9054-2
Rodríguez-Gallego, L. R., Mazzeo, N., Gorga, J., Meerhoff, M., Clemente, J., Kruk, C., Scasso, F., Lacerot, G., García, J., & Quintans, F. (2004). The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake. Lakes & Reservoirs, 9, 203–215. https://doi.org/10.1111/j.1440-1770.2004.00245.x
Rommens, W., Maes, J., Dekeza, N., Inghelbrecht, P., Nhiwatiwa, T., Holsters, E., Ollivier, F., Marshall, B., & Brendonck, L. (2003). The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv Für Hydrobiologie, 158(3), 373–388. https://doi.org/10.1127/0003-9136/2003/0158-0373
Ruiz-Téllez, T., de Rodrigo-López, E. M., Lorenzo-Granado, G., Albano-Pérez, E., Morán-López, R., & Sánchez-Guzmán, J. M. (2008). The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions, 3(1), 42–53. https://doi.org/10.3391/ai.2008.3.1.8
Rushing, W. N. (1973). Water hyacinth research in Puerto Rico. Hyacinth Control Journal, 13, 48–54. http://www.apms.org/japm/vol12/v12p48.pdf
Salamanca, E., Rengifo-Gallego, A., Madera-Parra, C., Ríos, D., & Avila-Williams, C. (2015). Phytoremediation using terrestrial plants. In A. Ansari, S. Gill, R. Gill, G. Lanza, & L. Newman (Eds.), Phytoremediation: Management of Environmental Contaminants (pp. 305–319). Springer International Publishing.
Sanmuga-Priya, E., & Senthamil Selvan, P. (2017). Water hyacinth (Eichhornia crassipes)- An efficient and economic adsorbent for textile effluent treatment- A review. Arabian Journal of Chemistry, 10(2), 3548–3558. https://doi.org/10.1016/j.arabjc.2014.03.002
Seagrave, C. (1988). Aquatic weed control. Fishing New Book. https://scholar.google.com/scholar_lookup?title=Aquatic%20weed%20control&publication_year=1988&author=Seagrave%2CC
Shanab, S. M. M., Shalaby, E. A., Lightfoot, D. A., & El-Shemy, H. A. (2010). Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS ONE, 5(10), Article e13200. https://doi.org/10.1371/journal.pone.0013200
Sosa, A. J., Cordo, H. A., & Sacco, J. (2007). Preliminary evaluation of Megamelus scutellaris Berg (Hemiptera: Delphacidae), a candidate for biological control of waterhyacinth. Biological Control, 42(2), 129–138. https://doi.org/10.1016/j.biocontrol.2007.04.012
Thayer, D., & Ramey, V. (1986). Mechanical harvesting of aquatic weeds-1986. University of Florida. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Thayer%2C+D.%2C+%26+Ramey%2C+V.+%281986%29&btnG=
Torres, B. (2020). Un herbicida que envenena todo lo que toca. La Jornada Ecológica, 233, 6–7. http://www.biodiversidadla.org/Recomendamos/La-Jornada-Ecologica-233-Quiere-su-comida-con-glifosato-%21Yo-no
Twongo, T., & Howard, G. (1998). Ways with weeds. New Scientist, 159, 57–57. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Twongo%2C+T.%2C+%26+Howard%2C+G.+%281998%29&btnG=
Uday, U. S. P., Choudhury, P., Bandyopadhyay, T. K., & Bhunia, B. (2016). Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. International Journal of Biological Macromolecules, 82, 1041–1054. https://doi.org/10.1016/j.ijbiomac.2015.10.086
Villamagna, A. M., & Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology, 55(2), 282–298. https://doi.org/10.1111/j.1365-2427.2009.02294.x
Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685–700. https://doi.org/10.1016/j.envint.2003.11.002
Wetzel, R. (1983). Limnology (2nd Ed.). Saunders College Pub.
Wilson, J. R., Holst, N., & Rees, M. (2005). Determinants and patterns of population growth in water hyacinth. Aquatic Botanic, 81(1), 51–67. https://doi.org/10.1016/j.aquabot.2004.11.002 .
Zeng, X., & Rasmussen, T. C. (2005). Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. Journal of Environmental Quality, 34, 1980–1991. https://doi.org/10.2134/jeq2004.0337
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).