Lirio acuático (Eichhornia crassipes): una revisión

Autores/as

DOI:

https://doi.org/10.15517/am.v33i1.44201

Palabras clave:

Eichhornia crssipes, plantas hidrófitas, especies invasoras

Resumen

Introducción. El lirio acuático (Eichhornia crassipes) es una planta hidrófita libre flotante de la familia Pontederiaceae. Es una de las plantas acuáticas con mejor reproducción y tasa de crecimiento, por lo cual se extiende y forma tapetes o esteras que constriñen a las plantas nativas sumergidas y flotantes, disminuye la entrada de luz en los cuerpos de agua y disminuye el oxígeno disuelto en el agua. Objetivo. Realizar una revisión bibliográfica del lirio acuático que permita a la comunidad científica una mejor comprensión de una especie invasora, así como los efectos que provoca en el ecosistema. Desarrollo. La capacidad invasiva de esta planta pone en peligro diversos ecosistemas, ya que aprovecha las aguas ricas en nutrientes. Además, las densas colonias flotadoras causan que el contenido de oxígeno descienda hasta cero debajo de su manto, lo que provoca daños a los ecosistemas. Conclusiones. El lirio acuático es una de las plantas acuáticas más invasoras del mundo, ya que causa efectos ecológicos y socioeconómicos. Esta planta se ha usado como fitorremediadora, en la remoción de organofosforados, lo que indica que se puede usar para limpiar aguas residuales. Además, puede usarse en la producción de etanol, papel, composta, biogás, alimento humano, forraje animal, fibra y en la extracción de ácidos grasos volátiles.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdel-Sabour, M. F. (2010). Water hyacinth: available and renewable resource. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(11), 1746–1759. https://www.researchgate.net/publication/258857392_Water_hyacinth_Available_and_renewable_resource

Adekoya, B. B., Ugwuzor, G. N., Olurin, K. B., Sodeinde, O. A., & Ekpo, O. A. (1993, November 16-20). A comparative assessment of the methods of control of water hyacinth infestation with regards to fish production [Conference presentation]. 10th Annual Conference of the Fisheries Society of Nigeria (FISON), Abeokuta, Nigeria. http://aquaticcommons.org/3513/

Anudechakul, C., Vangnai, A., & Ariyakanon, N. (2015). Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. International Journal of Phytoremediation, 17(7), 678–685. https://doi.org/10.1080/15226514.2014.964838

Babu, R. M., Sajeena, A., & Seetharaman, K. (2004). Solid substrate for production of Alternaria alternata conidia: a potential mycoherbicide for the control of Eichhornia crassipes (water hyacinth). Weed Research, 44(4), 298–304. https://doi.org/10.1111/j.1365-3180.2004.00403.x

Bhattacharya, A., & Pawan, K. (2010). Water hyacinth as a potential biofuel crop. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122. https://www.researchgate.net/publication/228363916_Water_hyacinth_as_a_potential_biofuel_crop

Charudattan, R. (2001, November 12). Are we on top of aquatic weeds? Weed problems, control options, and challenges [Conference presentation]. International symposium on the World’s Worst Weeds. British Crop Protection Council, Brighton, United Kingdom. https://www.researchgate.net/publication/228964598_Are_we_on_top_of_aquatic_weeds_Weed_problems_control_options_and_challenges

Chigbo, F. E., Smith, R. W., & Shore, F. (1982). Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes. Environmental Pollution Series A, Ecological and Biological, 27(1), 31–36. https://doi.org/10.1016/0143-1471(82)90060-5

Coetzee, J. A., Byrne, M. J., & Hill, M. P. (2007). Predicting the distribution of Eccritotarsus catarinensis, a natural enemy released on water hyacinth in South Africa. Entomologia Experimentalis Applicata, 125, 237–247. https://doi.org/10.1111/j.1570-7458.2007.00622.x

Coetzee, J. A., Jones, R. W., & Hill, M. P. (2014). Water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae), reduces benthic macroinvertebrate diversity in a protected subtropical lake in South Africa. Biodiversity and Conservation, 23, 1319–1330. https://doi.org/10.1007/s10531-014-0667-9

Fleming, J. P., & Dibble, E. D. (2015). Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia, 746(1), 23–37. https://doi.org/10.1007/s10750-014-2026-y

Gaertner, M., Larson, B. M. H., Irlich, U. M., Holmes, P. M., Stafford, L., Van Wilgen, B., & Richardson, D. (2016). Managing invasive species in cities: A framework from Cape Town, South Africa. Landscape and Urban Planning, 151, 1–9. https://doi.org/10.1016/j.landurbplan.2016.03.010

Gajalakshami, S., Ramasamy, E. V., & Abbasi, S. A. (2002). Vermicomposting of different forms of water hyacinth by the earthworm Eudrilus euginea, Kinburg. Bioresource Technology, 82(2), 165–169. https://doi.org/10.1016/S0960-8524(01)00163-8

Gakwavu, R. J., Sekemo, B. C., & Nhapi, I. (2012). Zinc and chromium removal mechanisms from industrial wastewater by using water hyacinth, Eichhornia crassipes (mart.) Solms. Applied Ecology and Environmental Research, 10(4), 493–502. https://doi.org/10.15666/aeer/1004_493502

Ganesh, S., Ramasamy, E. V., Gajalakshmi, S., & Abbasi, S. A. (2005). Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochemical Engineering Journal, 27(1), 17–23. https://doi.org/10.1016/j.bej.2005.06.010

Ganguly, A., Chatterjee, P. K., & Dey, A. (2012). Studies on ethanol production from water hyacinth. A review. Renewable and Sustainable Energy Reviews, 16(1), 966–972. https://doi.org/10.1016/j.rser.2011.09.018

Gao, L., & Li, B. (2004). The study of a specious invasive plant, water hyacinth (Eichhornia crassipes): Achievements and challenges. Chinese Journal of Plant Ecology, 28(6), 735–752. https://doi.org/10.17521/cjpe.2004.0097

Gibbons, M., Gibbons, H., & Sytsma, M. (1994). A Citizen’s manual for developing integrated aquatic vegetation management plans. Washington State Department of Ecology. http://www.ecy.wa.gov/programs/wa/plants/management/manual/index.html

Giraldo, E., & Garzon, A. (2002). The potential for water hyacinth to improve the quality of Bogota River water in the Muña Reservoir: comparison with the performance of waste stabilization ponds. Water Science Technology, 45(1), 103–110. https://doi.org/10.2166/wst.2002.0014

Gopal, B. (1987). Aquatic plant studies 1. Water Hyacinth. Elsevier Publishing. https://www.cabdirect.org/cabdirect/abstract/19870701831

Gopalakrishnan, A., Rajkumar, M., Sun, J., Parida, A., & Venmathi Maran, B. A. (2011). Integrated biological control of water hyacinths, Eichhornia crassipes by a novel combination of grass carp, Ctenopharyngodon idella (valenciennes, 1844), and the weevil, Neochetina spp. Chinese Journal of Oceanology and Limnology, 29(1), 162–166. https://doi.org/10.1007/s00343-011-0101-z

Greenfield, B. K., Siemerin, G. S., Andrews, J. C., Rajan, M., Andrews S. P., & Spencer, D. F. (2007). Mechanical shredding of water hyacinth (Eichhornia crassipes): Effects on water quality in the Sacramento-San Joaquin river delta, California. Estuaries and Coasts, 30(4), 627–640. https://doi.org/10.1007/BF02841960

Gunnarsson, C. C., & Petersen, C. M. (2007). Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Management, 27(1), 117–129. https://doi.org/10.1016/j.wasman.2005.12.011

Gutierrez E., Arreguin F., Huerto R., & Saldana P. (1994). Aquatic weed control. International Journal of Water Resources Development, 10(3), 291–312. https://doi.org/10.1080/07900629408722631

Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., & Kats, L. B. (2015). Aquatic invasive species: challenges for the future. Hydrobiologia, 750, 147–170. https://doi.org/10.1007/s10750-014-2166-0

Heard, T. A., & Winterton, S. L. (2000). Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. Journal of Applied Ecology, 37, 117–127. https://doi.org/10.1046/j.1365-2664.2000.00480.x

Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potencial consequences of climate chance for invasive species. Conservation Biology, 22(3), 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x

Hunt, R. J., & Christiansen, I. H. (2000). Understanding dissolved oxygen in streams. Information kit. CCRC Sustainable Sugar Production.

Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). Journal of Applied Sciences and Environmental Management, 14(2), 43–49. https://doi.org/10.4314/jasem.v14i2.57834

Kateregga, E., & Sterner, T. (2009). Las poblaciones de peces del lago Victoria y los efectos del Jacinto de agua. The Journal of Environment & Development, 18(1), 62–78. https://doi.org/10.1177/1070496508329467

Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A, Abdul, Q., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(2), 301–309. https://doi.org/10.1016/j.ecoenv.2008.02.024

Khanna, S., Santos, M., Ustin, S., & Haverkamp, P. (2011). An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. International Journal of Remote Sensing, 32, 1067–1094. https://doi.org/10.1080/01431160903505328

Malik, A. (2007). Environmental challenge vis a vis opportunity: the case of water hyacinth. Environment International, 33(1), 122–138. https://doi.org/10.1016/j.envint.2006.08.004

Mangas-Ramírez, E., & Elías-Gutiérrez, M. (2004). Effect of mechanical removal of water hyacinth (Eichhornia crassipes) on the water quality and biological communities in a Mexican reservoir. Aquatic Ecosisten & Management, 7(1), 161–168. https://doi.org/10.1080/14634980490281597

March-Mifsut, I. J., & Martínez-Jiménez, M. (2007). Especies invasoras de alto impacto a la biodiversidad. Prioridades en México. Instituto Mexicano de Tecnología del Agua. http://repositorio.imta.mx/handle/20.500.12013/1619

Martyn, R. D., & Freeman, T. E. (1978). Evaluation of Acremonium zonatum as a potential biocontrol agent of water hyacinth. Plant Disease Reporter, 62(7), 604–608. https://books.google.com.mx/books?hl=es&lr=&id=aAz0AAAAMAAJ&oi=fnd&pg=PA604&dq=Martyn,+RD.+and+Freeman,+TE.+1978&ots=s4HBI02ViX&sig=_-SsjwmWt3zv3kwlKKCivmnbFXw&redir_esc=y#v=onepage&q&f=false

Mayo, A. W., & Hanai, E. E. (2017). Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Physics and Chemistry of the Earth, Parts A/B/C, 100, 170–180. https://doi.org/10.1016/j.pce.2016.10.016

Meerhoff, M., Mazzeo, N., Moss, B., & Rodriguez-Gallego, L. (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology, 37, 377–391. https://doi.org/10.1023/B:AECO.0000007041.57843.0b

Mukhopadyay, S. K., & Hossain, A. (1990). Management and utilization of water hyacinth vegetation as natural resource in India for the benefit of agriculture. Indian Journal of Agronomy, 35(1–2), 218–223. https://www.cabdirect.org/cabdirect/abstract/19912310230

Nath, A., Sudip, C., & Chiranji, B. (2013). Bioadsorbtion of industrial dyes from aqueous solution onto water hyacinth (Eichornia crassipes): Equilibrium, kinetic, and sorption mechanism study. Desalination and water treatment, 52(7–9), 1484–1494. https://doi.org/10.1080/19443994.2013.787028

Ndimele, P. E., & Ndimele, C. C. (2013). Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms). International Journal of Environmental Studies, 70(2), 241–258. https://doi.org/10.1080/00207233.2013.771503

Nesslage, G. M., Wainger, L. A., Harms, N. E., & Cofrancesco, A. F. (2016). Quantifying the population response of invasive water hyacinth, Eichhornia crassipes, to biological control and winter weather in Louisiana, USA. Biological Invasions, 18(7), 2107–2115. https://doi.org/10.1007/s10530-016-1155-9

Parker, I. M., Simberloff, D., Lonsdale, W. M., Lonsdale, W. M., Goodel, K., Wonham, M., Kareiva, P. M., Williamson, M., Von Holle, B., Moyle, P. B., Byers, J. E., & Goldwasser, L. (1999). Impact: Toward a framework for understanding the ecological effects of invaders. Biological Invasions, 1, 3–19. https://doi.org/10.1023/A:1010034312781

Patel, S. (2012). Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews Environment Science of Biotechnology, 11, 249–259. https://doi.org/10.1007/s11157-012-9289-4

Perna, C., & Burrows, D. (2005). Improved dissolved oxigen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River flood plain. Australia, Marine Pollution Bulletin, 51(1–4), 138–148. https://doi.org/10.1016/j.marpolbul.2004.10.050

Pinto-Coelho, R. M., & Greco, M. K. B. (1999.) The contribution of water hyacinth (Eichhornia crassipes) and zooplankton to the internal cycling of phosphorus in the eutrophic Pampulha Reservoir, Brazil. Hydrobiologia, 411, 115–127. https://doi.org/10.1023/A:1003845516746 .

Poi-de-Neiff, A. (2003). Macroinvertebrates living on Eichhornia azurea Kunth in the Paraguay River. Acta Limnológica Brasileira, 15(1), 55–63. https://www.icmbio.gov.br/esectaiama/images/stories/Macroinvertebrates_living_on_Eichhornia_azurea_Kunth.pdf

Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate chance on aquatic invasive species. Conservation Biology, 22(3), 521–533. https://doi.org/10.1111/j.1523-1739.2008.00950.x

Rocha-Ramírez, A., Ramírez-Rojas, A., Chávez-López, R., & Alcocer, J. (2007). Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal system, Veracruz, Mexico. Aquatic Ecology, 41, 319–333. https://doi.org/10.1007/s10452-006-9054-2

Rodríguez-Gallego, L. R., Mazzeo, N., Gorga, J., Meerhoff, M., Clemente, J., Kruk, C., Scasso, F., Lacerot, G., García, J., & Quintans, F. (2004). The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake. Lakes & Reservoirs, 9, 203–215. https://doi.org/10.1111/j.1440-1770.2004.00245.x

Rommens, W., Maes, J., Dekeza, N., Inghelbrecht, P., Nhiwatiwa, T., Holsters, E., Ollivier, F., Marshall, B., & Brendonck, L. (2003). The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv Für Hydrobiologie, 158(3), 373–388. https://doi.org/10.1127/0003-9136/2003/0158-0373

Ruiz-Téllez, T., de Rodrigo-López, E. M., Lorenzo-Granado, G., Albano-Pérez, E., Morán-López, R., & Sánchez-Guzmán, J. M. (2008). The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions, 3(1), 42–53. https://doi.org/10.3391/ai.2008.3.1.8

Rushing, W. N. (1973). Water hyacinth research in Puerto Rico. Hyacinth Control Journal, 13, 48–54. http://www.apms.org/japm/vol12/v12p48.pdf

Salamanca, E., Rengifo-Gallego, A., Madera-Parra, C., Ríos, D., & Avila-Williams, C. (2015). Phytoremediation using terrestrial plants. In A. Ansari, S. Gill, R. Gill, G. Lanza, & L. Newman (Eds.), Phytoremediation: Management of Environmental Contaminants (pp. 305–319). Springer International Publishing.

Sanmuga-Priya, E., & Senthamil Selvan, P. (2017). Water hyacinth (Eichhornia crassipes)- An efficient and economic adsorbent for textile effluent treatment- A review. Arabian Journal of Chemistry, 10(2), 3548–3558. https://doi.org/10.1016/j.arabjc.2014.03.002

Seagrave, C. (1988). Aquatic weed control. Fishing New Book. https://scholar.google.com/scholar_lookup?title=Aquatic%20weed%20control&publication_year=1988&author=Seagrave%2CC

Shanab, S. M. M., Shalaby, E. A., Lightfoot, D. A., & El-Shemy, H. A. (2010). Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS ONE, 5(10), Article e13200. https://doi.org/10.1371/journal.pone.0013200

Sosa, A. J., Cordo, H. A., & Sacco, J. (2007). Preliminary evaluation of Megamelus scutellaris Berg (Hemiptera: Delphacidae), a candidate for biological control of waterhyacinth. Biological Control, 42(2), 129–138. https://doi.org/10.1016/j.biocontrol.2007.04.012

Thayer, D., & Ramey, V. (1986). Mechanical harvesting of aquatic weeds-1986. University of Florida. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Thayer%2C+D.%2C+%26+Ramey%2C+V.+%281986%29&btnG=

Torres, B. (2020). Un herbicida que envenena todo lo que toca. La Jornada Ecológica, 233, 6–7. http://www.biodiversidadla.org/Recomendamos/La-Jornada-Ecologica-233-Quiere-su-comida-con-glifosato-%21Yo-no

Twongo, T., & Howard, G. (1998). Ways with weeds. New Scientist, 159, 57–57. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Twongo%2C+T.%2C+%26+Howard%2C+G.+%281998%29&btnG=

Uday, U. S. P., Choudhury, P., Bandyopadhyay, T. K., & Bhunia, B. (2016). Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. International Journal of Biological Macromolecules, 82, 1041–1054. https://doi.org/10.1016/j.ijbiomac.2015.10.086

Villamagna, A. M., & Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology, 55(2), 282–298. https://doi.org/10.1111/j.1365-2427.2009.02294.x

Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685–700. https://doi.org/10.1016/j.envint.2003.11.002

Wetzel, R. (1983). Limnology (2nd Ed.). Saunders College Pub.

Wilson, J. R., Holst, N., & Rees, M. (2005). Determinants and patterns of population growth in water hyacinth. Aquatic Botanic, 81(1), 51–67. https://doi.org/10.1016/j.aquabot.2004.11.002 .

Zeng, X., & Rasmussen, T. C. (2005). Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. Journal of Environmental Quality, 34, 1980–1991. https://doi.org/10.2134/jeq2004.0337

Publicado

2021-10-04

Cómo citar

Rodríguez-Lara, J. W., Cervantes-Ortiz, F., Arambula-Villa, G., Mariscal-Amaro, L. A., Aguirre-Mancilla, C. L., & Andrio-Enríquez, E. (2021). Lirio acuático (Eichhornia crassipes): una revisión. Agronomía Mesoamericana, 33(1), 44201. https://doi.org/10.15517/am.v33i1.44201

Número

Sección

Revisiones bibliográficas

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.