Recent Advances in Research and Development to Increase Shelf Life and Safety of Packaged Foods

New Technologies in food packaging

Authors

DOI:

https://doi.org/10.15517/am.v33i3.48389

Keywords:

envases, aditivos alimentarios, aceites esenciales, antioxidantes, agentes antimicrobianos, sensores

Abstract

Introducción. El envasado de alimentos ha jugado un papel importante y variado, siempre de acuerdo con los requisitos y exigencias del mercado. Actualmente, estas necesidades se centran en el objetivo de tener alimentos seguros e inocuos durante el mayor tiempo posible. Para ello, se ha ampliado el estudio y desarrollo de nuevas tecnologías para el envasado de alimentos, que proporcionan las condiciones y características necesarias para alcanzar el objetivo propuesto. Objetivo. Presentar los avances más recientes en el campo del envasado de alimentos (activo e inteligente), incluyendo las perspectivas del impacto económico alcanzado y su correspondiente proyección futura. Desarrollo. Este trabajo presenta diferentes técnicas y criterios que se consideran utilizados para proponer el concepto de envasado activo, que cuenta con las condiciones necesarias para el suministro o supresión de sustancias o componentes generados en el mismo y que contribuyen a la conservación y deterioro de los alimentos contenidos. Al mismo tiempo, se presenta la tecnología conocida como embalaje inteligente, dotada de los recursos necesarios para monitorizar, e interpretar el estado interno del envase, comunicando esta situación fuera del mismo. En ambos casos, se promueve el uso de agentes o compuestos de origen natural para minimizar sus implicaciones sobre la salud y la modificación de los alimentos implicados. Conclusiones. La generación de envases activos e inteligentes requiere una evaluación individual de cada alimento específico, frente a los componentes utilizados. Conocer las concentraciones, según la característica que se requiera controlar, y así, comprender las posibles interacciones que se pueden producir entre el contenido y el recipiente que lo contiene.

Downloads

Download data is not yet available.

References

Aday, M. S., Caner, C., & Rahvalı, F. (2011). Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biology and Technology, 62(2), 179–187. https://doi.org/10.1016/j.postharvbio.2011.05.002

Ait-Oubahou, A., Nur Hanani, Z. A., & Jamilah, B. (2019). Packaging. In E. M. Yahia (Ed.), Postharvest Technology of Perishable Horticultural Commodities (pp. 375–399). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813276-0.00011-0

Aragüez, L., Colombo, A., Borneo, R., & Aguirre, A. (2020). Active packaging from triticale flour films for prolonging storage life of cherry tomato. Food Packaging and Shelf Life, 25, Article 100520. https://doi.org/10.1016/j.fpsl.2020.100520

Barreto, J. C., Trevisan, M. T. S., Hull, W. E., Erben, G., de Brito, E. S., Pfundstein, B., Würtele, G., Spiegelhalder, B., & Owen, R. W. (2008). Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). Journal of Agricultural and Food Chemistry, 56(14), 5599–5610. https://doi.org/10.1021/jf800738r

Bhargava, N., Sharanagat, V. S., Mor, R. S., & Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385–401. https://doi.org/10.1016/j.tifs.2020.09.015

Bolumar, T., LaPeña, D., Skibsted, L. H., & Orlien, V. (2016). Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties. Food Packaging and Shelf Life, 7, 26–33. https://doi.org/10.1016/j.fpsl.2016.01.002

Borah, H., & Dutta, U. (2019). Trends in beverage packaging. In A. M. Grumezescu, & A. M. Holban (Eds.), Trends in beverage packaging (pp. 1–19). Academic Press. https://doi.org/10.1016/B978-0-12-816683-3.00001-3

Cameron, G. (2020). The future of active and intelligent packaging to 2025 (Packaging) [Market Report]. US-Smithers Innovtive with Confidence.

Coetzee, E. M., Newman, J., Coupland, G. T., Thomas, M., Merwe, J., van der, Ren, Y., & McKirdy, S. J. (2019). Commercial trials evaluating the novel use of ethyl formate for in-transit fumigation of shipping containers. Journal of Environmental Science and Health, Part B, 54(8), 717–727. https://doi.org/10.1080/03601234.2019.1631101

da Rocha-Neto, A. C., Beaudry, R., Maraschin, M., Di Piero, R. M., & Almenar, E. (2019). Double-bottom antimicrobial packaging for apple shelf-life extension. Food Chemistry, 279, 379–388. https://doi.org/10.1016/j.foodchem.2018.12.021

da Silva-Filipini, G., Romani, V. P., & Guimarães Martins, V. (2020). Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocolloids, 109, Article 106139. https://doi.org/10.1016/j.foodhyd.2020.106139

Dey, A., & Neogi, S. (2019). Oxygen scavengers for food packaging applications: A review. Trends in Food Science & Technology, 90, 26–34. https://doi.org/10.1016/j.tifs.2019.05.013

Dong, S. L., Yam, K. L., & Piergiovanni, L. (2008). Food Packaging Science and Technology (1st ed.). CRC Press.

Estévez, M. (2011). Protein carbonyls in meat systems: A review. Meat Science, 89(3), 259–279. https://doi.org/10.1016/j.meatsci.2011.04.025

Fellows, P. (2017). Food processing technology (4th ed.). Woodhead Publishing.

Fraqueza, M. J., & Barreto, A. S. (2011). Gas mixtures approach to improve turkey meat shelf life under modified atmosphere packaging: The effect of carbon monoxide. Poultry Science, 90(9), 2076–2084. https://doi.org/10.3382/ps.2011-01366

Gaikwad, K. K., & Lee, Y. S. (2016). Novel natural phenolic compound-based oxygen scavenging system for active packaging applications. Journal of Food Measurement and Characterization, 10(3), 533–538. https://doi.org/10.1007/s11694-016-9332-1

Gaikwad, K. K., Singh, S., & Lee, Y. S. (2017). A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging materials. Progress in Organic Coatings, 111, 186–195. https://doi.org/10.1016/j.porgcoat.2017.05.016

Gaikwad, K. K., Singh, S., Shin, J., & Lee, Y. S. (2020). Novel polyisoprene-based UV-activated oxygen scavenging films and their applications in packaging of beef jerky. LWT, 117, Article 108643. https://doi.org/10.1016/j.lwt.2019.108643

Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., & Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules, 155, 1296–1306. https://doi.org/10.1016/j.ijbiomac.2019.11.101

Geng, J., Sun, Y., & Hua, J. (2016). 1,2- and 3,4-rich polyisoprene synthesized by Mo(VI)-based catalyst with phosphorus ligand. Polymer Science Series B, 58(5), 495–502. https://doi.org/10.1134/S1560090416050043

Ghaani, M., Cozzolino, C. A., Castelli, G., & Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51, 1–11. https://doi.org/10.1016/j.tifs.2016.02.008

Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42–51. https://doi.org/10.1016/j.tifs.2013.10.008

Hamman, J. H. (2008). Composition and applications of aloe vera leaf gel. Molecules, 13(8), 1599–1616. https://doi.org/10.3390/molecules13081599

Han-Lyn, F., Maryam-Adilah, Z. A., Nor-Khaizura, M. A. R., Jamilah, B., & Nur-Hanani, Z. A. (2020). Application of modified atmosphere and active packaging for oyster mushroom (Pleurotus ostreatus). Food Packaging and Shelf Life, 23, Article 100451. https://doi.org/10.1016/j.fpsl.2019.100451

Hou, Z., Qin, P., Zhang, Y., Cui, S., & Ren, G. (2013). Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50(2), 691–697. https://doi.org/10.1016/j.foodres.2011.07.037

Hutter, S., Rüegg, N., & Yildirim, S. (2016). Use of palladium based oxygen scavenger to prevent discoloration of ham. Food Packaging and Shelf Life, 8, 56–62. https://doi.org/10.1016/j.fpsl.2016.02.004

Jacob, J., Thomas, S., Loganathan, S., & Valapa, R. B. (2020). Antioxidant incorporated biopolymer composites for active packaging. In Y. Zhang (Ed.), Processing and development of polysaccharide-based biopolymers for packaging applications (1st Ed., pp. 239–260). Elsevier. https://doi.org/10.1016/B978-0-12-818795-1.00010-1

Jeong, S., Lee, H.-G., Cho, C. H., & Yoo, S. (2020). Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycarprolactone for active food packaging applications. Food Packaging and Shelf Life, 25, Article 100512. https://doi.org/10.1016/j.fpsl.2020.100512

Kaewklin, P., Siripatrawan, U., Suwanagul, A., & Lee, Y. S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112, 523–529. https://doi.org/10.1016/j.ijbiomac.2018.01.124

Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydrate Polymers, 227, Article 115303. https://doi.org/10.1016/j.carbpol.2019.115303

Kilcast, D., & Subramaniam, P. (2016). The stability and shelf life of food (2nd ed.). Elsevier. https://doi.org/10.1016/C2015-0-06842-3

Kumar, Y., Yadav, D. N., Ahmad, T., & Narsaiah, K. (2015). Recent trends in the use of natural antioxidants for meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 14(6), 796–812. https://doi.org/10.1111/1541-4337.12156

Kurek, M., Hlupić, L., Elez Garofulić, I., Descours, E., Ščetar, M., & Galić, K. (2019). Comparison of protective supports and antioxidative capacity of two bio-based films with revalorised fruit pomaces extracted from blueberry and red grape skin. Food Packaging and Shelf Life, 20, Article 100315. https://doi.org/10.1016/j.fpsl.2019.100315

Kuswandi, B., & Jumina. (2020). Active and intelligent packaging, safety, and quality controls. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 243–294). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00012-4

Lee, D. S. (2016). Carbon dioxide absorbers for food packaging applications. Trends in Food Science & Technology, 57, 146-155. https://doi.org/10.1016/j.tifs.2016.09.014

Lee, H. G., Jeong, S., & Yoo, S. (2019). Development of food packaging materials containing calcium hydroxide and porous medium with carbon dioxide-adsorptive function. Food Packaging and Shelf Life, 21, Article 100352. https://doi.org/10.1016/j.fpsl.2019.100352

Lee, J. S., Kim, H. K., Kyung, Y., Park, G.-H., Lee, B.-H., Yang, J.-O., Koo, H.-N., & Kim, G.-H. (2018). Fumigation activity of ethyl formate and phosphine against Tetranychus urticae (Acari: Tetranychidae) on imported sweet pumpkin. Journal of Economic Entomology, 111(4), 1625–1632. https://doi.org/10.1093/jee/toy090

Li, Y., Golding, J. B., Arcot, J., & Wills, R. B. H. (2018). Continuous exposure to ethylene in the storage environment adversely affects ‘Afourer’ mandarin fruit quality. Food Chemistry, 242, 585–590. https://doi.org/10.1016/j.foodchem.2017.09.088

Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2018). Rheological behavior of film-forming solutions and film properties from Artemisia sphaerocephala Krasch. Gum and purple onion peel extract. Food Hydrocolloids, 82, 124–134. https://doi.org/10.1016/j.foodhyd.2018.03.055

Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. Gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids, 87, 858–868. https://doi.org/10.1016/j.foodhyd.2018.08.028

Licciardello, F., Kharchoufi, S., Muratore, G., & Restuccia, C. (2018). Effect of edible coating combined with pomegranate peel extract on the quality maintenance of white shrimps (Parapenaeus longirostris) during refrigerated storage. Food Packaging and Shelf Life, 17, 114–119. https://doi.org/10.1016/j.fpsl.2018.06.009

Licciardello, F., & Piergiovanni, L. (2020). Packaging and food sustainability. In C. Galanakis (Ed.), The interaction of food Industry and environment (pp. 191–222). Academic Press. https://doi.org/10.1016/B978-0-12-816449-5.00006-0

Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., & Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules, 134, 993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175

Lloyd, K., Mirosa, M., & Birch, J. (2019). Active and intelligent packaging. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 177–182). Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.22421-9

Lorenzo, J. M., Gómez, M., Purriños, L., & Fonseca, S. (2016). Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry-cured foal sausage. Journal of the Science of Food and Agriculture, 96(4), 1194–1201. https://doi.org/10.1002/jsfa.7203

Loypimai, P., Moongngarm, A., & Chottanom, P. (2016). Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. Journal of Food Science and Technology, 53(1), 461–470. https://doi.org/10.1007/s13197-015-2002-1

Manalili, N., Dorado, M., & van Otterdijk, R. (2014). Appropriate food packaging solutions for developing countries. Food and Agriculture Organization of the United Nations.

Mansourbahmani, S., Ghareyazie, B., Zarinnia, V., Kalatejari, S., & Mohammadi, R. S. (2018). Study on the efficiency of ethylene scavengers on the maintenance of postharvest quality of tomato fruit. Journal of Food Measurement and Characterization, 12(2), 691–701. https://doi.org/10.1007/s11694-017-9682-3

Moazami-Goodarzi, M., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2020). Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules, 153, 240–247. https://doi.org/10.1016/j.ijbiomac.2020.03.014

Mohebi, E., & Shahbazi, Y. (2017). Application of chitosan and gelatin based active packaging films for peeled shrimp preservation: A novel functional wrapping design. LWT - Food Science and Technology, 76, 108–116. https://doi.org/10.1016/j.lwt.2016.10.062

Montero-Prado, P., Rodriguez-Lafuente, A., & Nerin, C. (2011). Active label-based packaging to extend the shelf-life of “Calanda” peach fruit: Changes in fruit quality and enzymatic activity. Postharvest Biology and Technology, 60(3), 211–219. https://doi.org/10.1016/j.postharvbio.2011.01.008

Moradi, M., Omer, A. K., Razavi, R., Valipour, S., & Guimarães, J. T. (2021). The relationship between milk somatic cell count and cheese production, quality and safety: A review. International Dairy Journal, 113, Article 104884. https://doi.org/10.1016/j.idairyj.2020.104884

Munekata, P. E. S., Pateiro, M., Bellucci, E. R. B., Domínguez, R., da Silva-Barretto, A. C., & Lorenzo, J. M. (2021). Strategies to increase the shelf life of meat and meat products with phenolic compounds. Advances in Food and Nutrition Research, 98, 171–205. https://doi.org/10.1016/bs.afnr.2021.02.008

Nerín, C., Vera, P., & Canellas, E. (2017). Active and intelligent food packaging. In R. V. Rai, & J. A. Bai (Eds.), Food Safety and Protection (pp. 459–491). CRC Press. https://doi.org/10.1201/9781315153414-14

Ni, X., Yu, J., Shao, P., Yu, J., Chen, H., & Gao, H. (2021). Preservation of Agaricus bisporus freshness with using innovative ethylene manipulating active packaging paper. Food Chemistry, 345, Article 128757. https://doi.org/10.1016/j.foodchem.2020.128757

Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73. https://doi.org/10.1016/j.foodres.2016.02.018

Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., & Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212–221. https://doi.org/10.1016/j.foodchem.2017.07.095

Pateiro, M., Domínguez, R., Bermúdez, R., Munekata, P. E. S., Zhang, W., Gagaoua, M., & Lorenzo, J. M. (2019). Antioxidant active packaging systems to extend the shelf life of sliced cooked ham. Current Research in Food Science, 1, 24–30. https://doi.org/10.1016/j.crfs.2019.10.002

Pedro, A. C., Granato, D., & Rosso, N. D. (2016). Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability. Food Chemistry, 191, 12–20. https://doi.org/10.1016/j.foodchem.2015.02.045

Pelaes-Vital, A. C., Guerrero, A., Monteschio, J. O., Valero, M. V., Carvalho, C. B., Filho, B. A. A., Madrona, G. S., & Prado, I. N. (2016). Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLOS ONE, 11(8), Article e0160535. https://doi.org/10.1371/journal.pone.0160535

Perez de Vargas-Sansalvador, I. M., Erenas, M. M., Diamond, D., Quilty, B., & Capitan-Vallvey, L. F. (2017). Water based-ionic liquid carbon dioxide sensor for applications in the food industry. Sensors and Actuators B: Chemical, 253, 302–309. https://doi.org/10.1016/j.snb.2017.06.047

Perez de Vargas-Sansalvador, I. M., Erenas, M. M., Martínez-Olmos, A., Fernández-Ramos, M. D., & Capitán-Vallvey, L. F. (2019). Carbon dioxide sensors for food packaging. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22632-2

Pirsa, S., Sani, I. K., & Khodayvandi, S. (2018). Design and fabrication of starch-nano clay composite films loaded with methyl orange and bromocresol green for determination of spoilage in milk package. Polymers for Advanced Technologies, 29(11), 2750–2758. https://doi.org/10.1002/pat.4397

Pirsa, S., Sani, I. K., Pirouzifard, M. K., & Erfani, A. (2020). Smart film based on chitosan/Melissa officinalis essences/ pomegranate peel extract to detect cream cheeses spoilage. Food Additives & Contaminants: Part A, 37(4), 634–648. https://doi.org/10.1080/19440049.2020.1716079

Qin, Y., Yun, D., Xu, F., Chen, D., Kan, J., & Liu, J. (2021). Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: Functionality, stability and application. Food Hydrocolloids, 119, Article 106850. https://doi.org/10.1016/j.foodhyd.2021.106850

Qiu, L., Zhang, M., Tang, J., Adhikari, B., & Cao, P. (2019). Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International, 116, 90–102. https://doi.org/10.1016/j.foodres.2018.12.055

Rambabu, K., Bharath, G., Banat, F., Show, P. L., & Cocoletzi, H. H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126, 1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196

Risch, S. J. (2009). Food packaging history and innovations. Journal of Agricultural and Food Chemistry American Chemical Society, 57(18), 8089–8092. https://doi.org/10.1021/jf900040r

Robertson, G. L. (2016). Food packaging: Principles and practice (3rd ed.). CRC Press. https://doi.org/10.1201/b21347

Rodriguez-Lafuente, A., Nerin, C., & Batlle, R. (2010). Active paraffin-based paper packaging for extending the shelf life of cherry tomatoes. Journal of Agricultural and Food Chemistry, 58(11), 6780–6786. https://doi.org/10.1021/jf100728n

Rudra, S. G., Gundewadi, G., & Sharma, R. R. (2020). Natural additives with antimicrobial and flavoring potential for fresh-cut produce. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 165–182). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00008-2

Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T., & Suppakul, P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130, 547–554. https://doi.org/10.1016/j.talanta.2014.07.048

Saliu, F., & Della-Pergola, R. (2018). Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical, 258, 1117–1124. https://doi.org/10.1016/j.snb.2017.12.007

ScienceDirect. (2021). Science, health and medical journals, full text articles and books. https://www.sciencedirect.com/

Sommano, S. R., Chanasut, U., & Kumpoun, W. (2020). Enzymatic browning and its amelioration in fresh-cut tropical fruits. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 51–76). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00003-3

Sucheta, Singla, G., Chaturvedi, K., & Sandhu, P. P. (2020). Status and recent trends in fresh-cut fruits and vegetables. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 17–49). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00002-1

Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., Tan, A. C., & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110–123. https://doi.org/10.1016/j.tifs.2013.08.001

Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408–420. https://doi.org/10.1111/j.1365-2621.2003.tb05687.x

Van de Poel, B., Smet, D., & Van Der Straeten, D. (2015). Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiology, 169(1), 61–72. https://doi.org/10.1104/pp.15.00724

Vanderroost, M., Ragaert, P., Devlieghere, F., & De Meulenaer, B. (2014). Intelligent food packaging: The next generation. Trends in Food Science & Technology, 39(1), 47–62. https://doi.org/10.1016/j.tifs.2014.06.009

Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science & Technology, 10(3), 77–86. https://doi.org/10.1016/S0924-2244(99)00032-1

Wang, H. J., An, D. S., Rhim, J. W., & Lee, D. S. (2015). A multi-functional biofilm used as an active insert in modified atmosphere packaging for fresh produce. Packaging Technology and Science, 28(12), 999–1010. https://doi.org/10.1002/pts.2179

Watson, J. A., Treadwell, D., Sargent, S. A., Brecht, J. K., & Pelletier, W. (2019). HS1270/HS1270: Postharvest storage, packaging and handling of specialty crops: A guide for Florida small farm producers. University of Florida. https://edis.ifas.ufl.edu/publication/HS1270

Wei, H., Seidi, F., Zhang, T., Jin, Y., & Xiao, H. (2021). Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemistry, 337, Article 127750. https://doi.org/10.1016/j.foodchem.2020.127750

Wikström, F., Williams, H., Trischler, J., & Rowe, Z. (2019). The importance of packaging functions for food waste of different products in households. Sustainability, 11(9), Article 2641. https://doi.org/10.3390/su11092641

Wrona, M., Silva, F., Salafranca, J., Nerín, C., Alfonso, M. J., & Caballero, M. Á. (2021). Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control, 120, Article 107536. https://doi.org/10.1016/j.foodcont.2020.107536

Yildirim, S., & Röcker, B. (2018). Active packaging. In M. Â. P. R. Cerqueira, J. M. Lagaron, L. M. Pastrana Castro, & A. A. M. de Oliveira Soares Vicente (Eds.), Nanomaterials for food packaging (pp. 173–202). Elsevier. https://doi.org/10.1016/B978-0-323-51271-8.00007-3

Yousuf, B., & Qadri, O. S. (2020). Preservation of fresh-cut fruits and vegetables by edible coatings. In M. W. Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 225–242). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00011-2

Zaitoon, A., Lim, L.-T., & Scott-Dupree, C. (2021). Activated release of ethyl formate vapor from its precursor encapsulated in ethyl Cellulose/Poly(Ethylene oxide) electrospun nonwovens intended for active packaging of fresh produce. Food Hydrocolloids, 112, Article 106313. https://doi.org/10.1016/j.foodhyd.2020.106313

Zhai, X., Li, Z., Zhang, J., Shi, J., Zou, X., Huang, X., Zhang, D., Sun, Y., Yang, Z., Holmes, M., Gong, Y., & Povey, M. (2018). Natural biomaterial-based edible and pH-sensitive films combined with electrochemical writing for intelligent food packaging. Journal of Agricultural and Food Chemistry, 66(48), 12836–12846. https://doi.org/10.1021/acs.jafc.8b04932

Published

2022-07-11

How to Cite

Montero-Prado, P., & Ruiz Morales, G. A. (2022). Recent Advances in Research and Development to Increase Shelf Life and Safety of Packaged Foods: New Technologies in food packaging. Agronomía Mesoamericana, 33(3), 48389. https://doi.org/10.15517/am.v33i3.48389