Insects as protein supplements in the livestock production animals: A sustainable and efficient alternative
DOI:
https://doi.org/10.15517/am.2024.60354Keywords:
animal nutrition, concentrates feed, protein source, sustainability, fodder, animal feedAbstract
Introduction. The agricultural sector faces the challenge of finding sustainable alternatives for animal feed, given the growing demand for food and environmental problems. Objective. Document the outstanding nutritional characteristics of insects and their potential as a food alternative livestock production. Methodology. A bibliographic search was conducted in the Science Direct databases, based on the terms related to the consumption and production of animal feed and its environmental impact. Development. The nutritional profile of insects is outstanding due to the content of proteins (from 32 to 74 %), essential amino acids (from 8 to 39 %), healthy fats (from 6 to 21 %), vitamins, and minerals (up to 278.3 mg per 100 g dry matter). The high digestibility of nutrients makes them an important option to complement the animal diet. However, its use carries risks such as allergies, contamination, and nutritional imbalances, which can be minimized with proper management of appropriate hygiene practices, guaranteeing the quality of the insects used and complying with relevant regulations. Conclusions. The insects are an important source of proteins, amino acids, fats and minerals, all these elements of comparable quality to other traditional sources such as soybeans, wheat, improved grasses and other legumes. The use of insect represents an innovative and sustainable alternative for animal feeding, becoming a balanced and nutritious food source and benefits for both animals and the environment. Its successful adoption requires a balance between nutritional and environmental benefits and the costs associated with its production and regulation.
Downloads
References
Adesogan, A. T., Havelaar, A. H., McKune, S. L., Eilittä, M., & Dahl, G. E. (2020). Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Global Food Security, 25, Article 100325. https://doi.org/10.1016/j.gfs.2019.100325
Agapkin, A. M., Makhotina, I. A., Ibragimova, N. A., Goryunova, O. B., Izembayeva, A. K., & Kalachev, S. L. (2022). The problem of agricultural waste and ways to solve it. IOP Conference Series: Earth and Environmental Science, 981(2), Article 022009. https://doi.org/10.1088/1755-1315/981/2/022009
Aigbedion-Atalor, P. O., Fening, K. O., Adeyemi, A. O., Idemudia, I., Ojukwu, K. C., Nwobodo, M. A., Sunday, O., Isiogu, N. C., & Oke, A. O. (2024). Regenerative edible insects for food, feed, and sustainable livelihoods in Nigeria: Consumption, potential and prospects. Future Foods, 9, Article 100309. https://doi.org/10.1016/j.fufo.2024.100309
Akande, K. E., Doma, U. D., Agu, H. O., & Adamu, H. M. (2010). Major antinutrients found in plant protein sources: Their effect on nutrition. Pakistan Journal of Nutrition, 9(8), 827-832. https://doi.org/10.3923/pjn.2010.827.832
Akhtar, Y., & Isman, M. B. (2018). 10—Insects as an alternative protein source. In R. Y. Yada (Ed.), Proteins in food processing (2nd ed., pp. 263-288). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100722-8.00011-5
Anuduang, A., Loo, Y. Y., Jomduang, S., Lim, S. J., & Wan Mustapha, W. A. (2020). Effect of thermal processing on physico-chemical and antioxidant properties in mulberry silkworm (Bombyx mori L.) Powder. Foods, 9(7), Article 7. https://doi.org/10.3390/foods9070871
Bai, Y., Wang, L., Zhang, H., & Li, D. (2024). Restore vegetation, graze animals properly or apply new technologies? How to effectively restore degraded land based on carbon trading. Sustainable Futures, 7, Article 100228. https://doi.org/10.1016/j.sftr.2024.100228
Baiano, A. (2020). Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology, 100, 35-50. https://doi.org/10.1016/j.tifs.2020.03.040
Barrett, M., Chia, S. Y., Fischer, B., & Tomberlin, J. K. (2022). Welfare considerations for farming black soldier flies, Hermetia illucens (Diptera: Stratiomyidae): a model for the insects as food and feed industry. Journal of Insects as Food and Feed, 9(2), 119-148. https://doi.org/10.3920/JIFF2022.0041
Bastiaansen, T. M. M., de Vries, S., Martens, B.M.J., Benders, R.T., Vissers, E., Dijksman, J.A., Hendriks, W.H., Thomas, M., & Bosch, G. (2024). Identifying feed characteristics that affect the pellet manufacturing of livestock diets containing different coproducts. Cleaner and Circular Bioeconomy, 7, Article 100073. https://doi.org/10.1016/j.clcb.2024.100073
Bosch, G., Oonincx, D., Jordan, H., Zhang, J., Van Loon, J., Van Huis, A., & Tomberlin, J. k. (2020). Standardisation of quantitative resource conversion studies with black soldier fly larvae. Journal of Insects as Food and Feed, 6(2), Article 2. https://doi.org/10.3920/JIFF2019.0004
Brogan, E. N., Park, Y.-L., Matak, K. E., & Jaczynski, J. (2021). Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders, LWT, 152, Article 112314. https://doi.org/10.1016/j.lwt.2021.112314
Bultosa, G. (2016). Functional foods: Dietary fibers, prebiotics, probiotics, and synbiotics. En C. Wrigley, H. Corke, K. Seetharaman, & J. Faubion (Eds.), Encyclopedia of food grains (2nd ed., pp. 11-16). Academic Press. https://doi.org/10.1016/B978-0-12-394437-5.00245-X
Cadinu, L. A., Barra, P., Torre, F., Delogu, F., & Madau, F. A. (2020). Insect Rearing: Potential, Challenges, and Circularity. Sustainability, 12(11), Article 11. https://doi.org/10.3390/su12114567
Cámara-Ruiz, M., Sánchez-Venegas, A., Blasco-Lavilla, N., Hernández, M. D., Sánchez-Liarte, F., Fernández-Gutiérrez, D., & Lara-Guillén, A. J. (2023). Comparative Assessment of Insect Processing Technologies for Sustainable Insect Protein Production. Sustainability, 15(18), Article 18. https://doi.org/10.3390/su151813735
Cardoso, D. N., Silva, A. R. R., Morgado, R. G., Mostafaie, A., Pereira, A., Pinto, J., Lopes, I. G., Murta, D., Soares, A. M. V. M., Brooks, B. W., & Loureiro, S. (2023). Improving Product Safety for Edible Insects: Toxicokinetics of Hg in Tenebrio molitor and Hermetia illucens. ACS Food Science & Technology. 3(4), 790–798. https://doi.org/10.1021/acsfoodscitech.3c00051
Conway, A., Jaiswal, S., & Jaiswal, A. K. (2024). The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods, 13(3), Article 3. https://doi.org/10.3390/foods13030387
Cortes Ortiz, J. A., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Chapter 6—Insect mass production technologies. In A. T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as sustainable food ingredients (pp. 153-201). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00006-5
Dossey, A. T., Tatum, J. T., & McGill, W. L. (2016). Chapter 5 - Modern insect-based food industry: Current status, insect processing technology, and recommendations moving forward. In A. T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as sustainable food ingredients (pp. 113-152). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00005-3
Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, Article e00902. https://doi.org/10.1016/j.gecco.2020.e00902
El Hassan, N., Hamed, S., Hassan, A., Eltayeb, M., & Babiker, E. (2008). Nutritional evaluation and physiochemical properties of boiled and fried tree locust. Pakistan Journal of Nutrition, 2(7), 325-329. https://doi.org/10.3923/pjn.2008.325.329
Fatima, N., Emambux, M. N., Olaimat, A. N., Stratakos, A. C., Nawaz, A., Wahyono, A., Gul, K., Park, J., & Shahbaz, H. M. (2023). Recent advances in microalgae, insects, and cultured meat as sustainable alternative protein sources. Food and Humanity, 1, 731-741. https://doi.org/10.1016/j.foohum.2023.07.009
Finke, M. D. (2015). Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biology, 34, 554-564. https://doi.org/10.1002/zoo.21246
Food and Agriculture Organization of the United Nations. (2006). Livestock and the environment. Retrieved August 2024, from https://www.fao.org/4/i0680e/i0680e04.pdf
Food and Agriculture Organization of the United Nations. (2023). Nutrition and feeding: Gateway to poultry production and products. https://www.fao.org/poultry-production-products/production/nutrition-and-feeding/en/
Gahukar, R. T. (2016). Chapter 4 - Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In A. T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as sustainable food ingredients (pp. 85-111). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00004-1
Garcia-Launay, F., van der Werf, H. M. G., Nguyen, T. T. H., Le Tutour, L., & Dourmad, J. Y. (2014). Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig production using life cycle assessment. Livestock Science, 161, 158-175. https://doi.org/10.1016/j.livsci.2013.11.027
Gasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry, 23, 67-79. https://doi.org/10.1016/j.cogsc.2020.03.003
Goi, A., De Marchi, M., & Costa, A. (2023). Minerals and essential amino acids of bovine colostrum: Phenotypic variability and predictive ability of mid- and near-infrared spectroscopy. Journal of Dairy Science, 106(12), 8341-8356. https://doi.org/10.3168/jds.2023-23459 https://doi.org/10.3168/jds.2023-23459
Grabowski, N. (2020). Microbiology of african edible insects. In A. Adam Mariod (Ed.), African edible insects as alternative source of food, oil, protein and bioactive components (pp. 59-81). Springer International Publishing. https://doi.org/10.1007/978-3-030-32952-5_4
Guillaume, J. B., Mezdour, S., Marion-Poll, F., Terrol, C., & Schmidely, P. (2023). Asymptotic estimated digestibility, a new indicator of black soldier fly (Hermetia illucens) conversion efficiency in relation to larval density. Journal of Insects as Food and Feed, 9(7), 893-906. https://doi.org/10.3920/JIFF2022.0103
Hancz, C., Sultana, S., Nagy, Z., & Biró, J. (2024). The role of insects in sustainable animal feed production for environmentally friendly agriculture: A Review. Animals, 14(7), Article 7. https://doi.org/10.3390/ani14071009
Hasnan, F. F. B., Feng, Y., Sun, T., Parraga, K., Schwarz, M., & Zarei, M. (2023). Insects as Valuable Sources of Protein and Peptides: Production, Functional Properties, and Challenges. Foods, 12(23), Article 23. https://doi.org/10.3390/foods12234243
Henchion, M., Moloney, A.P., Hyland, J., Zimmermann, J., & McCarthy, S. (2021). Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal, 15(Suppl.1), Article 100287. https://doi.org/10.1016/j.animal.2021.100287
Hermans, W., Senden, J., Churchward-Venne, T. A., Paulussen, K., Fuchs, C., Smeets, J., Van Loon, J., Verdijk, L., & Van Loon, L. (2021). Insects are a viable protein source for human consumption: From insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. The American Journal of Clinical Nutrition, 114(3), 934-944. https://doi.org/10.1093/ajcn/nqab115
Herrero, M., Thornton, P. K., Gerber, P., & Reid, R. S. (2009). Livestock, livelihoods and the environment: Understanding the trade-offs. Current Opinion in Environmental Sustainability, 1(2), 111-120. https://doi.org/10.1016/j.cosust.2009.10.003
Hosni, E., Al-Khalaf, A., Nasser, M., ElShahed, S., & Alashaal, S. (2024). Locusta migratoria (L.) (Orthoptera) in a warming world: Unravelling the ecological consequences of climate change using GIS. Biodiversity Data Journal, 12, Article e115845. https://doi.org/10.3897/BDJ.12.e115845
Hu, Z., Li, H., Liu, S., Xue, R., Sun, J., & Ji, H. (2023). Assessment of black soldier fly (Hermetia illucens) larvae meal as a potential substitute for soybean meal on growth performance and flesh quality of grass carp Ctenopharyngodon idellus. Animal Nutrition, 14, 425-449. https://doi.org/10.1016/j.aninu.2023.06.006
Huhtanen, P., & Krizsan, S. J. (2023). Nutritional uniformity of cell wall and lignin fractions in grass and red clover silage evaluated by the Lucas test with application to forage feed evaluation. Animal Feed Science and Technology, 306, Article 115819. https://doi.org/10.1016/j.anifeedsci.2023.115819
Iqbal, N., Agrawal, A., Dubey, S., Kumar, J., Iqbal, N., Agrawal, A., Dubey, S., & Kumar, J. (2020). Role of decomposers in agricultural waste management. In T. Basso (Ed.), Biotechnological Applications of Biomass. IntechOpen. https://doi.org/10.5772/intechopen.93816
Islam, M., & Yang, C. (2017). Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poultry Science, 96(1), 27-34. https://doi.org/10.3382/ps/pew220
Joosten, L., Lecocq, A., Jensen, A. B., Haenen, O., Schmitt, E., & Eilenberg, J. (2020). Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production. Entomologia Experimentalis et Applicata, 168(6-7), Article 6-7. https://doi.org/10.1111/eea.12916
Kari, Z., Sukri, S., Rusli, N., Mat, K., Mahmud, M. B., Zakaria, N., Wee, W., Hamid, N., Kabir, M., Ariff, N., Abidin, S., Zakaria, M., Goh, K., Khoo, M., Doan, H., Tahiluddin, A., & Wei, L. (2023). Recent advances, challenges, opportunities, product development and sustainability of main agricultural wastes for the aquaculture feed industry – A review. Annals of Animal Science, 23(1), 25-38. https://doi.org/10.2478/aoas-2022-0082
Kewuyemi, Y. O., Kesa, H., Chinma, C. E., & Adebo, O. A. (2020). Fermented Edible Insects for Promoting Food Security in Africa. Insects, 11(5), Article 5. https://doi.org/10.3390/insects11050283
Khalil, R., Kallas, Z., Pujolà, M., & Haddarah, A. (2024). Consumers´ willingness to pay for snacks enriched with insects: A trending and sustainable protein source. Future Foods, 9, Article 100360. https://doi.org/10.1016/j.fufo.2024.100360
Khanal, P., Pandey, D., Næss, G., Cabrita, A. R. J., Fonseca, A. J. M., Maia, M. R. G., Timilsina, B., Veldkamp, T., Sapkota, R., & Overrein, H. (2023). Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. Journal of Cleaner Production, 389, Article 136104. https://doi.org/10.1016/j.jclepro.2023.136104
Koko, M. Y. F., & Mariod, A. A. (2020). Sensory quality of edible insects. In A. Adam Mariod (Ed.), African edible insects as alternative source of food, oil, protein and bioactive components (pp. 115-122). Springer International Publishing. https://doi.org/10.1007/978-3-030-32952-5_7
Kolobe, S. D., Manyelo, T. G., Malematja, E., Sebola, N. A., & Mabelebele, M. (2023). Fats and major fatty acids present in edible insects utilised as food and livestock feed. Veterinary and Animal Science, 22, Article 100312. https://doi.org/10.1016/j.vas.2023.100312
Koutsos, L., McComb, A., & Finke, M. (2019). Insect composition and uses in animal feeding applications: A brief review, Annals of the Entomological Society of America, 112(6), 544–551. https://doi.org/10.1093/aesa/saz033
Lal, R. (2023). Farming systems to return land for nature: It's all about soil health and re-carbonization of the terrestrial biosphere. Farming System, 1(1), Article 100002. https://doi.org/10.1016/j.farsys.2023.100002
Lange, K. W., & Nakamura, Y. (2021). Edible insects as future food: Chances and challenges. Journal of Future Foods, 1(1), 38-46. https://doi.org/10.1016/j.jfutfo.2021.10.001
Langston, K., Selaledi, L., Tanga, C., & Yusuf, A. (2024). The nutritional profile of the yellow mealworm larvae (Tenebrio molitor) reared on four different substrates. Future Foods, 9, Article 100388. https://doi.org/10.1016/j.fufo.2024.100388
Leni, G., Caligiani, A., & Sforza, S. (2021). Chapter 40 - Bioconversion of agri-food waste and by-products through insects: A new valorization opportunity. In R. Bhat (Ed.), Valorization of agri-food wastes and by-products (pp. 809-828). Academic Press. https://doi.org/10.1016/B978-0-12-824044-1.00013-1
Li, M., Mao, C., Li, X., Jiang, L., Zhang, W., Li, M., Liu, H., Fang, Y., Liu, S., Yang, G., & Hou, X. (2023). Edible insects: A New sustainable nutritional resource worth promoting. Foods, 12(22), Article 22. https://doi.org/10.3390/foods12224073
Lokuge, G. M. S., Larsen, M. K., Maigaard, M., Wiking, L., Larsen, L. B., Lund, P., & Poulsen, N. A. (2024). Effects of feeding whole-cracked rapeseeds, nitrate, and 3-nitrooxypropanol on protein composition, minerals, and vitamin B in milk from Danish Holstein cows. Journal of Dairy Science, In Press https://doi.org/10.3168/jds.2023-24372
Lucas, K. R. G., & Kebreab, E. (2024). Retrospective analysis of the main feedstocks for animal feed in the world: How the green revolution has affected their environmental performance over the last 60 years, from 1961 to 2021. Science of The Total Environment, 926, Article 171882. https://doi.org/10.1016/j.scitotenv.2024.171882
Madau, F. A., Arru, B., Furesi, R., & Pulina, P. (2020). Insect farming for feed and food production from a circular business model perspective. Sustainability, 12(13), Article 13. https://doi.org/10.3390/su12135418
Marone, P. A. (2016). Chapter 7—Food safety and regulatory concerns. In A. T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as sustainable food ingredients (pp. 203-221). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00007-7
Méda, B., Garcia-Launay, F., Dusart, L., Ponchant, P., Espagnol, S., & Wilfart, A. (2021). Reducing environmental impacts of feed using multiobjective formulation: What benefits at the farm gate for pig and broiler production? Animal, 15(1), Article 100024. https://doi.org/10.1016/j.animal.2020.100024
Mertenat, A., Diener, S., & Zurbrügg, C. (2019). Black soldier fly biowaste treatment – Assessment of global warming potential. Waste Management, 84, 173-181. https://doi.org/10.1016/j.wasman.2018.11.040
Mézes, M., & Erdélyi, M. (2020). Food safety of edible insects. In A. Adam Mariod (Ed.), African edible insects as alternative source of food, oil, protein and bioactive components (pp. 83-94). Springer International Publishing. https://doi.org/10.1007/978-3-030-32952-5_5
Monteiro, A., Barreto-Mendes, L., Fanchone, A., Morgavi, D. P., Pedreira, B. C., Magalhães, C. A. S., Abdalla, A. L., & Eugène, M. (2024). Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Science of The Total Environment, 906, Article 167396. https://doi.org/10.1016/j.scitotenv.2023.167396
Mosnier, E., Van der Werf, H. M. G., Boissy, J., & Dourmad, J.-Y. (2011). Evaluation of the environmental implications of the incorporation of feed-use amino acids in the manufacturing of pig and broiler feeds using Life Cycle Assessment. Animal, 5(12), 1972-1983. https://doi.org/10.1017/S1751731111001078
Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1-8. https://doi.org/10.1016/j.gfs.2017.01.001
Mouritsen, O. G., Duelund, L., Calleja, G., & Frøst, M. B. (2017). Flavour of fermented fish, insect, game, and pea sauces: Garum revisited. International Journal of Gastronomy and Food Science, 9, 16-28. https://doi.org/10.1016/j.ijgfs.2017.05.002
Mungkung, R., Aubin, J., Prihadi, T. H., Slembrouck, J., van der Werf, H. M. G., & Legendre, M. (2013). Life Cycle Assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. Journal of Cleaner Production, 57, 249-256. https://doi.org/10.1016/j.jclepro.2013.05.029
Nagarajan, D., Varjani, S., Lee, D.-J., & Chang, J.-S. (2021). Sustainable aquaculture and animal feed from microalgae – Nutritive value and techno-functional components. Renewable and Sustainable Energy Reviews, 150, Article 111549. https://doi.org/10.1016/j.rser.2021.111549
Nguyen, T. T. H., Bouvarel, I., Ponchant, P., & Van der Werf, H. M. G. (2012). Using environmental constraints to formulate low-impact poultry feeds. Journal of Cleaner Production, 28, 215-224. https://doi.org/10.1016/j.jclepro.2011.06.029
Nolan, P., Mahmoud, A., Kavle, R., Carne, A., Bekhit, A., & Agyei, D. (2023). Chapter 17 - Edible insects: Protein composition, digestibility, and biofunctionalities. In Z. Bhat, J. Morton, A. Bekhit, & H. Suleria (Eds.), Processing technologies and food protein digestion (pp. 429-494). Academic Press. https://doi.org/10.1016/B978-0-323-95052-7.00020-0
Oviedo, M. V., García, J. F., & Gutiérrez, C. (2022). Mosca soldado negra: Eslabón perdido en la cadena de revalorización de residuos orgánicos. Revista Ciencia, 73(3), Article 3. https://www.revistaciencia.amc.edu.mx/index.php/vol-73-numero-3/328-novedades-cientificas/960-mosca-soldado-negra-eslabon-perdido-en-la-cadena-de-revalorizacion-de-residuos-organicos
Payne, C. L. R., Scarborough, P., Rayner, M., & Nonaka, K. (2016). Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. European Journal of Clinical Nutrition, 70, 285–291. https://doi.org/10.1038/ejcn.2015.149
Pereira, M. F., Rossi, C. C., da Silva, G. C., Rosa, J. N., & Bazzolli, D. M. S. (2020). Galleria mellonella as an infection model: An in-depth look at why it works and practical considerations for successful application. Pathogens and Disease, 78(8), Article ftaa056. https://doi.org/10.1093/femspd/ftaa056
Pinotti, L., Ferrari, L., Fumagalli, F., Luciano, A., Manoni, M., Mazzoleni, S., Govoni, C., Rulli, M. C., Lin, P., Bee, G., & Tretola, M. (2023). Review: Pig-based bioconversion: the use of former food products to keep nutrients in the food chain. Animal, 17, Article 100918. https://doi.org/10.1016/j.animal.2023.100918
Poma, G., Cuykx, M., Amato, E., Calaprice, C., Focant, J. F., & Covaci, A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food and Chemical Toxicology, 100, 70-79. https://doi.org/10.1016/j.fct.2016.12.006
Prudêncio da Silva, V., Van der Werf, H. M. G., Spies, A., & Soares, S. R. (2010). Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. Journal of Environmental Management, 91(9), 1831-1839. https://doi.org/10.1016/j.jenvman.2010.04.001
Pulikkamath, A., & Shafeek A. (2024). A preliminary analysis and estimation of the status of feed and fodder in Kerala. Heliyon, 10(10), Article e31200. https://doi.org/10.1016/j.heliyon.2024.e31200
Ravindran, V. (2013). Main ingredients used in poultry feed formulations. In Food and Agriculture Organization of the United Nations (Ed.), Poultry feed availability and nutrition in developing countries (pp 1-4). Food and Agriculture Organization of the United Nations. https://www.fao.org/4/al705e/al705e00.pdf
Ravindran, V. (2024). Nutrition of meat animals: Poultry. In M. Dikeman (Ed.), Encyclopedia of meat sciences (3rd ed., pp. 8-16). Elsevier. https://doi.org/10.1016/B978-0-323-85125-1.00209-X
Rehman, N., Edkins, V., & Ogrinc, N. (2024). Is sustainable consumption a sufficient motivator for consumers to adopt meat alternatives? A consumer perspective on plant-based, cell-culture-derived, and insect-based alternatives. Foods, 13(11), Article 11. https://doi.org/10.3390/foods13111627
Rivas-Navia, D. M., Dueñas-Rivadeneira, A. A., Dueñas-Rivadeneira, J. P., Aransiola, S. A., Maddela, N. R., & Prasad, R. (2023). Bioactive compounds of insects for food use: Potentialities and risks. Journal of Agriculture and Food Research, 14, Article 100807. https://doi.org/10.1016/j.jafr.2023.100807
Romero, M. R., Claydon, A. J., Fitches, E. C., Wakefield, M. E., & Charlton, A. J. (2016). Sequence homology of the fly proteins tropomyosin, arginine kinase and myosin light chain with known allergens in invertebrates. Journal of Insects as Food and Feed, 2(2), 69-82. https://doi.org/10.3920/JIFF2015.0067
Rumbos, C. I., Karapanagiotidis, I. T., Mente, E., Psofakis, P., & Athanassiou, C. G. (2020). Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Scientific Reports, 10(1), Article 11224. https://doi.org/10.1038/s41598-020-67363-1
Rumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802-823. https://doi.org/10.1002/mnfr.201200735
Rumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/j.ifset.2012.11.005
Ruxton, C. H. S., & Gordon, S. (2024). Animal board invited review: The contribution of red meat to adult nutrition and health beyond protein. Animal, 18(3), Article 101103. https://doi.org/10.1016/j.animal.2024.101103
Sairanen, A., & Huhtanen, P. (2024). Variation in individual milk production responses to supplementary protein feeding with two types of forages. Livestock Science, 280, Article 105394. https://doi.org/10.1016/j.livsci.2023.105394
Sánchez-Velázquez, O. A., Ma, Z., Mirón-Mérida, V., Mondor, M., & Hernández-Álvarez, A. J. (2024). Chapter 5—Insect processing technologies. In M. García-Vaquero & C. Álvarez García (Eds.), Insects as food and food ingredients (pp. 67-92). Academic Press. https://doi.org/10.1016/B978-0-323-95594-2.00020-3
Serrano, I., Verdial, C., Tavares, L., & Oliveira, M. (2023). The virtuous Galleria mellonella model for scientific experimentation. Antibiotics, 12(3), Article 3. https://doi.org/10.3390/antibiotics12030505
Shurson, G. C., Dierenfeld, E. S., & Dou, Z. (2023). Rules are meant to be broken – Rethinking the regulations on the use of food waste as animal feed. Resources, Conservation and Recycling, 199, Article 107273. https://doi.org/10.1016/j.resconrec.2023.107273
Siddiqui, S. A., Ristow, B., Rahayu, T., Putra, N. S., Widya Yuwono, N., Nisa’, K., Mategeko, B., Smetana, S., Saki, M., Nawaz, A., & Nagdalian, A. (2022). Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Management, 140, 1-13. https://doi.org/10.1016/j.wasman.2021.12.044
Sogari, G., Bellezza Oddon, S., Gasco, L., van Huis, A., Spranghers, T., & Mancini, S. (2023). Review: Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal, 17, Article 100904. https://doi.org/10.1016/j.animal.2023.100904
Sørensen, J. G., Addison, M. F., & Terblanche, J. S. (2012). Mass-rearing of insects for pest management: Challenges, synergies and advances from evolutionary physiology. Crop Protection, 38, 87-94. https://doi.org/10.1016/j.cropro.2012.03.023
Springmann, M., Mason-D’Croz, D., Robinson, S., Wiebe, K., Godfray, H. C., Rayner, M., & Scarborough, P. (2017). Mitigation potential and global health impacts from emissions pricing of food commodities. Nature Climate Change, 7, 69–74. https://doi.org/10.1038/nclimate3155
Springmann, M., Clark, M., Mason-D'Croz, D., Wiebe, K., León Bodirsky, B., Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., … Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562, 519–525. https://doi.org/10.1038/s41586-018-0594-0
Sun, X., Dou, Z., Shurson, G. C., & Hu, B. (2024). Bioprocessing to upcycle agro-industrial and food wastes into high-nutritional value animal feed for sustainable food and agriculture systems. Resources, Conservation and Recycling, 201, Article 107325. https://doi.org/10.1016/j.resconrec.2023.107325
Tanaka, S. (1994). Diapause as a pivotal factor for latitudinal and seasonal adaptation in Locusta migratoria in Japan. In H. V. Danks (Ed.), Insect life-cycle polymorphism: Theory, evolution and ecological consequences for seasonality and diapause control (pp. 173-190). Springer Netherlands. https://doi.org/10.1007/978-94-017-1888-2_8
Tomotake, H., Katagiri, M., & Yamato, M. (2010). Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid, Journal of Nutritional Science and Vitaminology, 56(6), 446-448. https://doi.org/10.3177/jnsv.56.446
Tsai, C. J.-Y., Loh, J. M. S., & Proft, T. (2016). Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 7(3), 214-229. https://doi.org/10.1080/21505594.2015.1135289
Vale-Hagan, W., Singhal, S., Grigoletto, I., Totaro-Fila, C., Theodoridou, K., & Koidis, A. (2023). Edible insects in mixed-sourced protein meals for animal feed and food: An EU focus. Food and Humanity, 1, 1180-1187. https://doi.org/10.1016/j.foohum.2023.09.011
Van der Fels-Klerx, H. J., Camenzuli, L., Belluco, S., Meijer, N., & Ricci, A. (2018). Food Safety Issues Related to Uses of Insects for Feeds and Foods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1172-1183. https://doi.org/10.1111/1541-4337.12385
Van Itterbeeck, J., Rakotomalala Andrianavalona, I. N., Rajemison, F. I., Rakotondrasoa, J. F., Ralantoarinaivo, V. R., Hugel, S., & Fisher, B. L. (2019). Diversity and use of edible grasshoppers, locusts, crickets, and katydids (Orthoptera) in Madagascar. Foods, 8(12), Article 12. https://doi.org/10.3390/foods8120666
Van Zanten, H. H. E., Van Ittersum, M. K., & De Boer, I. J. M. (2019). The role of farm animals in a circular food system. Global Food Security, 21, 18-22. https://doi.org/10.1016/j.gfs.2019.06.003
Wang, J., Deng, L., Chen, M., Che, Y., Li, L., Zhu, L., Chen, G., & Feng, T. (2024). Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. Animal Nutrition, 17, 244-264. https://doi.org/10.1016/j.aninu.2024.01.012
Wilkinson, J. M., & Lee, M. R. F. (2018). Review: Use of human-edible animal feeds by ruminant livestock. Animal, 12(8), 1735-1743. https://doi.org/10.1017/S175173111700218X
Wondimu, B., Tadele, Y., & Tonamo, A. (2024). Fodder trees: Identification, leaf biomass yield, nutritional quality and socioeconomic importance in Essera district, Dawuro zone, southwest Ethiopia. Journal of Agriculture and Food Research, 18, Article 101371. https://doi.org/10.1016/j.jafr.2024.101371
Wynants, E., Frooninckx, L., Crauwels, S., Verreth, C., De Smet, J., Sandrock, C., Wohlfahrt, J., Van Schelt, J., Depraetere, S., Lievens, B., Van Miert, S., Claes, J., & Van Campenhout, L. (2019). Assessing the Microbiota of Black Soldier Fly Larvae (Hermetia illucens) Reared on Organic Waste Streams on Four Different Locations at Laboratory and Large Scale. Microbial Ecology, 77(4), 913-930. https://doi.org/10.1007/s00248-018-1286-x
Xu, J.-h, Xiao, S., Wang, J.-h, Wang, B., Cai, Y.-x, & Hu, W.-f (2023). Comparative study of the effects of ultrasound-assisted alkaline extraction on black soldier fly (Hermetia illucens) larvae protein: Nutritional, structural, and functional properties. Ultrasonics Sonochemistry, 101, Article 106662. https://doi.org/10.1016/j.ultsonch.2023.106662
Zielińska, E., Baraniak, B., Karaś, M., Rybczyńska, K., & Jakubczyk, A. (2015). Selected species of edible insects as a source of nutrient composition. Food Research International, 77(Part 3), 460-466. https://doi.org/10.1016/j.foodres.2015.09.008
Zou, X., Liu, M., Li, X., Pan, F., Wu, X., Fang, X., Zhou, F., Peng, W., & Tian, W. (2024). Applications of insect nutrition resources in animal production. Journal of Agriculture and Food Research, 15, Article 100966. https://doi.org/10.1016/j.jafr.2024.100966
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pablo Montero-Prado, Rolando Montero-Atencio, Randy Atencio-Valdespino
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).