Determination of a diagrammatical severity scale for net blotch in malting barley (Hordeum vulgare L.)

Authors

DOI:

https://doi.org/10.15517/am.v33i3.49035

Keywords:

Drechslera teres, pathometry, fungal diseases

Abstract

Introduction. At present, the net blotch caused by Dreschlera teres in barley, does not have a visual scale to assess the severity of the disease in the field, therefore, the lack of a standard method for visual quantification of the disease can lead to imprecise estimates that induce to wrong conclusions. Objective. To develop a scale to assess the severity of net blotch in barley leaves. Materials and methods. One hundred leaves of different malting barley cultivars used in a trial at the experimental field of the Universidad Nacional del Noroeste de la Provincia de Buenos Aires, in the locality of Junin, Buenos Aires, Argentina, were collected in 2017, which presented different severity levels. The scale was determined with the following severity values: 1 %, 2.1 %, 4.5 %, 9.1 %, 17.8 %, 31.7 %, and 50 %. The validation of the proposed scale was carried out based on fifty barley leaves with different levels of net blotch severity, distributed to twenty evaluators without experience in estimating the damage from this disease. Validation was carried out by evaluating the severity of the leaves first without scale and then with the proposed scale. Statistical analyzes were performed using a t-test and simple linear regression. Results. The use of the scale improved the assessment of the severity in leaves with net blotch, because on average the slope of the regression of most of the evaluators increased by 15 % when they used the visual scale to evaluate the disease. Conclusion. The development of a scale to assess the severity of the net blotch in barley leaves was achieved.

Downloads

Download data is not yet available.

References

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez L., Tablada M., & Robledo, C. W. (2011). Infostat - Software estadístico. Infostat. http://www.infostat.com.ar/index.php?mod=page&id=15

Godoy, C. V., Koga, L. J., & Canteri, M. G. (2006). Diagrammatic scale for assessment of soybean rust severity. Fitopatologia Brasileira, 31(1), 63–68. https://doi.org/10.1590/s0100-41582006000100011

Horsfall, J. C., & Barratt, R. W. (1945). An improved grading system for measuring plant diseases. Phytopathology, 35, 665.

Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2022). Diagrammatic scale for assessment the severity of Cercospora leaf blight on soybean (Glycine max) leaflets. Agronomía Mesoamericana, 33(1), Article 43338. https://doi.org/10.15517/am.v33i1.43338

Martins, M. C., Guerzoni, R. A., Câmara, G. M. S., Mattiazzi, P., Lourenço, S. A., & Amorim, L. (2004). Escala diagramática para a quantificação do complexo de doenças foliares de final de ciclo em soja. Fitopatologia Brasileira, 29(2), 179–184. https://doi.org/10.1590/s0100-41582004000200009

Mathre, D. E. (1997). Compendium of Barley diseases (2nd ed.). APS Press.

Miralles, D. J., Arisnabarreta, S., & Alzuela, I. (2011). Desarrollo ontogénico y generación del rendimiento. En D. J. Miralles, R. L. Benech-Arnold, & L. G. Abeledo (Eds.), Cebada cervecera (1ª ed., pp. 3–34). Editorial Facultad de Agronomía.

Nutter Jr., F. W., & Schultz, P. M. (1995). Improving the accuracy and precision of disease assessments: selection of methods and use of computer-aided training programs. Canadian Journal of Plant Pathology, 17(2), 174–184. https://doi.org/10.1080/07060669509500709

Soares, R. M., Godoy, C. V., & de Oliveira, M. C. N. (2009). Escala diagramática para avaliação da severidade da mancha alvo da soja. Tropical Plant Pathology, 34(5), 333–338. https://doi.org/10.1590/s1982-56762009000500007

StatSoft. (2005). STATISTICA Data analysis software system. https://statistica-update.software.informer.com/7.1/

Published

2022-07-11

How to Cite

Lavilla, M., & Petta, A. (2022). Determination of a diagrammatical severity scale for net blotch in malting barley (Hordeum vulgare L.). Agronomía Mesoamericana, 33(3), 49035. https://doi.org/10.15517/am.v33i3.49035

Most read articles by the same author(s)