Vitamin E profile in rice (Oryza sativa L.) seeds grown and commercialized in Costa Rica


  • Valery Conejo-López Universidad de Costa Rica, Centro para Investigaciones en Granos y Semillas, San Jose, Costa Rica
  • Luis Barboza-Barquero Universidad de Costa Rica, Centro para Investigaciones en Granos y Semillas, San Jose, Costa Rica
  • Álvaro Azofeifa-Delgado Universidad de Costa Rica, Centro para Investigaciones en Granos y Semillas, San Jose, Costa Rica
  • Ester Vargas-Ramírez Universidad de Costa Rica, Centro para Investigaciones en Granos y Semillas, San Jose, Costa Rica
  • Andrea Irías-Mata Universidad de Costa Rica, Centro para Investigaciones en Granos y Semillas, San Jose, Costa Rica



tocopherols, tocotrienols, seed, chromatography, validation


Introduction. Rice (Oryza sativa L.) is one of the most consumed cereals worldwide, the indica and japonica subspecies are the most cultivated. The vitamin E present in rice has a high antioxidant activity that contributes to extend the longevity of its seeds. Its quantification allows to know the nutritional contribution of this vitamin. Objective. To analyze the vitamin E profile in seeds of indica (registered commercial, aromatic, promising in development) and japonica subspecies of rice (O. sativa L.), consumed in Costa Rica. Materials and methods. Twenty-seven materials grown in the Chorotega and Brunca regions of Costa Rica, harvested in 2020 were analyzed. Vitamin E was quantified by ultra-high performance liquid chromatography coupled to triple quadrupole mass detection with chemical ionization source at atmospheric pressure at the Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, in 2021. Results. In the vitamin E profile, a characteristic clustering was obtained for the japonica samples, which was opposite to that presented by the indica samples. The majority compounds were γ-tocotrienol, α-tocopherol, and γ-tocopherol, the range of total vitamin E concentration was 5.50 to 33.20 μg g-1, where the japonica subspecies reported the lowest amount (6.30 – 8.80 μg g-1), while the Nayuribe sample, belonging to the registered commercial indica subspecies, obtained the highest concentration (33.20 ± 7.40 μg g-1). Conclusion. Although the analyzed subvarieties are phylogenetically from the same species, the significant differences found in the nutritional intake of vitamin E may be due to intrinsic characteristics of each subspecies. The significantly high vitamin E content in the Nayuribe sample showed that it is possible to find stocks for a high vitamin E content among the varieties analyzed.


Download data is not yet available.


Acevedo, M. A., Castrillo, W. A., & Belmonte, U. C. (2006). Origen, evolución y diversidad del arroz. Agronomía Tropical, 56(2), 151-170.

Ansolin, M., Tono de Souza, P., de Almeida Meirelles, A. J., & Caldas Batista, E. A. (2017). Tocopherols and tocotrienols: An adapted methodology by UHPLC/MS without sample pretreatment steps. Food Analytical Methods, 10(7), 2165–2174.

Barrantes Rojas, J. P. (2019). Determinación de la respuesta de cultivares de arroz criollo (Oryza sativa L.) costarricense a linajes de Pyricularia oryzae Cavara mediante pruebas de virulencia en condiciones de invernadero [Tesis de Licenciatura, Universidad de Costa Rica]. Repositorio SIBDI de la Universidad de Costa Rica.

Bell, E. C., John, M., Hughes, R. J., & Pham, T. (2014). Ultra-performance liquid chromatographic determination of tocopherols and retinol in human plasma. Journal of Chromatographic Science, 52(9), 1065–1070.

Calvo-Castro, L. A., Sus, N., Schiborr, C., Bosy-Westphal, A., Duran, M. L., Fesenmeyer, D., Fesenmeyer, G., & Frank, J. (2019). Pharmacokinetics of vitamin E, γ-oryzanol, and ferulic acid in healthy humans after the ingestion of a rice bran-enriched porridge prepared with water or with milk. European Journal of Nutrition, 58(5), 2099–2110.

Chen, D., Li, Y., Fang, T., Shi, X., & Chen, X. (2016). Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice. Plant Science, 244, 31–39.

Corporación Arrocera Nacional. (2021a). Informe anual estadístico 2020-2021.

Corporación Arrocera Nacional. (2021b, junio 11). Comportamiento del arroz en la canasta básica y el IPC general.

Delgado-Zamarreño, M., Bustamante-Rangel, M., Sierra-Manzano, S., Verdugo-Jara, M., & Carabias-Martínez, R. (2009). Simultaneous extraction of tocotrienols and tocopherols from cereals using pressurized liquid extraction prior to LC determination. Journal of Separation Science, 32(9), 1430–1436.

Fu, J. -Y., Che, H. -L., Tan, D. M. -Y., & Teng, K. -T. (2014). Bioavailability of tocotrienols: Evidence in human studies. Nutrition & Metabolism, 11(1), Article 5.

García, L., Ávila, M., Jayaro, Y., Alezones, J., Hernández, F., Lozada, C., & Romero, M. (2019). Caracterización de Dasmati: Cultivar de arroz aromático adaptado a las condiciones agroclimáticas de Venezuela. Bioagro, 31(3), 227–234.

Grebenstein, N., & Frank, J. (2012). Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. Journal of Chromatography A, 1243, 39–46.

Guadamúz Mayorga, C. (2019). Estudio de las principales propiedades físico—Químicas y sensoriales que influyen sobre la calidad del grano cocido de diferentes variedades de arroz (Oryza sativa) utilizando un método de cocción determinado [Tesis de Licenciatura, Universidad de Costa Rica]. Repositorio SIBDI de la Universidad de Costa Rica.

Gunaratne, A., Wu, K., Li, D., Bentota, A., Corke, H., & Cai, Y. -Z. (2013). Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chemistry, 138(2-3), 1153–1161.

Hay, F. R., Valdez, R., Lee, J. -S., & Sta. Cruz, P. C. (2019). Seed longevity phenotyping: Recommendations on research methodology. Journal of Experimental Botany, 70(2), 425–434.

Huang, S. -H., & Ng, L. -T. (2011). Quantification of tocopherols, tocotrienols, and γ-oryzanol contents and their distribution in some commercial rice varieties in Taiwan. Journal of Agricultural and Food Chemistry, 59(20), 11150–11159.

Irías-Mata, A., Stuetz, W., Sus, N., Hammann, S., Gralla, K., Cordero-Solano, A., Vetter, W., & Frank, J. (2017). Tocopherols, tocomonoenols, and tocotrienols in oils of Costa Rican Palm Fruits: A comparison between six varieties and chemical versus mechanical extraction. Journal of Agricultural and Food Chemistry, 65(34), 7476–7482.

Ito, V. C., & Lacerda, L. G. (2019). Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry, 301, Article 125304.

Lauridsen, C., Leonard, S. W., Griffin, D. A., Liebler, D. C., McClure, T. D., & Traber, M. G. (2001). Quantitative analysis by liquid chromatography–tandem mass spectrometry of deuterium-labeled and unlabeled vitamin E in biological samples. Analytical Biochemistry, 289(1), 89–95.

Lee, J. -S., Kwak, J., Cho, J. -H., Chebotarov, D., Yoon, M. -R., Lee, J. -S., Hamilton, N. R. S., & Hay, F. R. (2019). A high proportion of beta-tocopherol in vitamin E is associated with poor seed longevity in rice produced under temperate conditions. Plant Genetic Resources: Characterization and Utilization, 17(04), 375–378.

Lee, J. -S., Kwak, J., Yoon, M. -R., Lee, J. -S., & Hay, F. R. (2017). Contrasting tocol ratios associated with seed longevity in rice variety groups. Seed Science Research, 27(4), 273–280.

Longvah, T., Mangthya, K., Subhash, K., Sen, S., & Rathi, S. (2021). Comprehensive nutritional evaluation of popular rice varieties of Assam, Northeast India. Journal of Food Composition and Analysis, 101, Article 103952.

Meganathan, P., & Fu, J. -Y. (2016). Biological properties of tocotrienols: Evidence in human studies. International Journal of Molecular Sciences, 17(11), Article 1682.

Molkenbuhr, E. L. (2020). Arroz: Temporada 2019/20- 2020/21. Oficina de Estudios y Políticas Agrarias.

Monge-Rojas, R., & Nuñez, H. C. (2006). Tabla de composición de alimentos de Costa Rica: Ácidos grasos. Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud.

Oficina Nacional de Semillas. (2020). Características varietales de arroz. Programa de certificación de semilla de arroz. Oficina Nacional de Semillas.

Olcott, H. S., & Mattill, H. A. (1931). The unsaponificable lipids of lettuce. 3. Antioxidant. Journal of Biological Chemistry, 93, 65–70.

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2022). La producción, la utilización y el comercio de cereales alcanzarán niveles récord en 2021/22.

Panel on Dietary Antioxidants and Related Compounds, Subcommittee on Upper Reference Levels of Nutrients, Subcommittee on Interpretation and Uses of Dietary Reference Intakes, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, & Institute of Medicine. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academies Press.

Pinciroli, M., Ponzio, N. R., & Salsamendi, M. (2015). El arroz: Alimento de millones (1a ed.). Universidad Nacional del Centro de la Provincia de Buenos Aires.

Presidencia de la República, & Ministerio de Salud. (2002, enero 2). Reforma reglamento para el enriquecimiento del arroz No 30031-S. Sistema Costarricense de Iinformación Jurídica.

Salazar, H., Barazarte, H., Padua, M., & Estanga, M. (2019). Evaluación del proceso de parbolizado y calidad de las variedades de Arroz Payara 1FL y SD20A. Agroindustria, Sociedad y Ambiente, 2(13), 4–23.

Sen, C. K., Khanna, S., & Roy, S. (2007). Tocotrienols in health and disease: The other half of the natural vitamin E family. Molecular Aspects of Medicine, 28(5-6), 692–728.

Shammugasamy, B., Ramakrishnan, Y., Ghazali, H. M., & Muhammad, K. (2015). Tocopherol and tocotrienol contents of different varieties of rice in Malaysia: Vitamin E content of Malaysian rice. Journal of the Science of Food and Agriculture, 95(4), 672–678.

Szewczyk, K., Chojnacka, A., & Górnicka, M. (2021). Tocopherols and tocotrienols—bioactive dietary compounds; what is certain, what is doubt? International Journal of Molecular Sciences, 22(12), Article 6222.

Yu, X., Chu, M., Chu, C., Du, Y., Shi, J., Liu, X., Liu, Y., Zhang, H., Zhang, Z., & Yan, N. (2020). Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chemistry, 331, Article 127293.

Zhang, G. -Y., Liu, R. -R., Zhang, P., Xu, Y., Zhu, J., Gu, M. -H., Liang, G. -H., & Liu, Q. -Q. (2012). Variation and distribution of vitamin E and composition in seeds among different rice varieties. Acta Agronomica Sinica, 38(1), 55–61.

Zhu, L., Yang, S., Li, G., Zhang, X., Yang, J., Lai, X., & Yang, G. (2016). Simultaneous analysis of tocopherols, tocotrienols, phospholipids, γ-oryzanols and β-carotene in rice by ultra-high performance liquid chromatography coupled to a linear ion trap-orbitrap mass spectrometer. Analytical Methods, 8(28), 5628–5637.

Zubair, M., Anwar, F., Ali, S., & Iqbal, T. (2012). Proximate composition and minerals profile of selected Rice (Oryza sativa L.) varieties of Pakistan. Asian Journal of Chemistry, 24(1), 417–421.



How to Cite

Conejo-López, V., Barboza-Barquero, L., Azofeifa-Delgado, Álvaro, Vargas-Ramírez, E., & Irías-Mata, A. (2022). Vitamin E profile in rice (Oryza sativa L.) seeds grown and commercialized in Costa Rica. Agronomía Mesoamericana, 33(Especial), 51283.

Most read articles by the same author(s)