Soil microorganisms and their relationship with coffee beverage quality: A review
DOI:
https://doi.org/10.15517/am.2024.57260Keywords:
sustainable agriculture, organoleptic characteristics, soil ecology, functional microbiomeAbstract
Introduction. Coffee (Coffea spp.) is the second most traded product globally and is cultivated in over eighty countries. Its cultivation is complex because it belongs to an ecosystem where abiotic and biotic factors interact under various agronomic management conditions. To understand the development of the coffee plant and its influence on the sensory quality of the final product, it is necessary to explore the intricate interactions between the coffee plant and the native microorganisms within the crop environment. Objective. To describe the role of the coffee soil microbiota, specially bacteria and fungi, and how they may contribute to the final quality of the beverage. Development. Soil is one of the most diverse and least studied ecosystems, where crucial ecological functions for plant growth and development take place. Identifying soil microbial components and their interactions with other organisms is important from an agronomic perspective. The soil microbiota can enhance plant physiology; thus, this review aims to connect how the sensory attributes of coffee beverage can be positively influenced by soil microbiota. Articles from ScienceDirect, Scopus, Web of Science, and Google Scholar from 2011 to 2023 were reviewed. The data show the diversity of plant growth-promoting rhizobacteria (PGPR), nitrogen-fixing bacteria (NFB), and arbuscular mycorrhizal fungi (AMF) associated with coffee cultivation. Additionally, microbial compounds play an important role in the formation of sensory attributes and are related to the coffee cup quality. Conclusion. The microbial diversity of soil and on the fruit can synthesize or degrade compounds that affect the sensory profile of the coffee beverage, which could have implications for sustainability and quality.
Downloads
References
Alcarraz Curi, M., Heredia Jiménez, V., & Julian Ibarra, J. P. (2019). Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizosfera de Coffea spp. en Pichanaqui, Perú. Biotecnología Vegetal, 19(4), 285–295. https://revista.ibp.co.cu/index.php/BV/article/view/645
Aldrich-Wolfe, L., Black, K. L., Hartmann, E. D. L., Shivega, W. G., Schmaltz, L. C., McGlynn, R. D., Johnson, P. G., Asheim Keller, R. J., & Vink, S. N. (2020). Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. Mycorrhiza, 30(4), 513–527. https://doi.org/10.1007/S00572-020-00967-7
Alemayehu, D. (2017). Review on genetic diversity of coffee (Coffea arabica .L) in Ethiopia. International Journal of Forestry and Horticulture, 3(2), 18–27. https://doi.org/10.20431/2454-9487.0302003
Andrade, S. A. L., Mazzafera, P., Schiavinato, M. A., & Silveira, A. P. D. (2019). Arbuscular mycorrhizal association in coffee. Journal of Agricultural Science, 147(2), 105–115. https://doi.org/10.1017/S0021859608008344
Bano, S. A., & Uzair, B. (2021). Arbuscular Mycorrhizal Fungi (AMF) for improved plant health and production. In M. Kaushal, & R. Prasad (Eds.), Microbial biotechnology in crop protection (pp. 147–169). Springer, Singapore. https://doi.org/10.1007/978-981-16-0049-4_6
Bez, C., Esposito, A., Musonerimana, S., Nguyen, T. H., Navarro-Escalante, L., Tesfaye, K., Turello, L., Navarini, L., Piazza, S., & Venturi, V. (2023). Comparative study of the rhizosphere microbiome of Coffea arabica grown in different countries reveals a small set of prevalent and keystone taxa. Rhizosphere, 25, Article 100652. https://doi.org/10.1016/j.rhisph.2022.100652
Bratz Simmer, M. M., Soares da Silva, M. de C., Louzada Pereira, L., Rizzo Moreira, T., Carvalho Guarçoni, R., Reis Veloso, T. G., Réboli da Silva, I. M., Lorenzoni Entringer, T., Megumi Kasuya, M. C., Rodrigues da Luz, J. M., Moreli, A. P., & da Silva Oliveira, E. C. (2022). Edaphoclimatic conditions and the soil and fruit microbiota influence on the chemical and sensory quality of the coffee beverage. European Food Research and Technology, 248(12), 2941–2953. https://doi.org/10.1007/s00217-022-04102-y
Cabrera-Rodríguez, A., Trejo-Calzada, R., García-De la Peña, G., Arreola-Ávila, J. G., Nava-Reyna, E., Vaca-Paniagua, F., Díaz-Velásquez, C., & Meza-Herrera, C. A. (2020). A metagenomic approach in the evaluation of the soil microbiome in coffee plantations under organic and conventional production in tropical agroecosystems. Emirates Journal of Food and Agriculture, 32(4), 263–270. https://doi.org/10.9755/EJFA.2020.V32.I4.2092
Cheng, B., Furtado, A., Smyth, H. E., & Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, 57, 20–30. https://doi.org/10.1016/j.tifs.2016.09.003
Cisneros-Rojas, C. A., Sánchez-de Prager, M., & Menjivar-Flores, J. C. (2017). Efecto de bacterias solubilizadoras de fosfatos sobre el desarrollo de plántulas de café. Agronomía Mesoamericana, 28(1), 149–158. https://doi.org/10.15517/am.v28i1.22021
Collins Caldwell, A., Fidéles Silva, L. C., Canêdo da Silva, C., & Costa Ouverney, C. (2015). Prokaryotic diversity in the rhizosphere of organic, intensive, and transitional coffee farms in Brazil. PloS One, 10(6), Article e0106355. https://doi.org/10.1371/JOURNAL.PONE.0106355
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of advanced research, 19(1), 29–37. https://doi.org/10.1016/j.jare.2019.03.004
Cortes, A. D., & Nahar-Cortes, S. (2022). Biological nitrogen fixation in the rhizosphere of cacao (Theobroma cacao L.) and coffee (Coffea spp.) and its role in sustainable agriculture. In D. K. Maheshwari, R. Dobhal, & S. Dheeman (Eds.), Nitrogen fixing bacteria: Sustainable growth of non-legumes (pp. 215–231). Springer, Singapore. https://doi.org/10.1007/978-981-19-4906-7_10
Cruz-O’Byrne, R., Piraneque-Gambasica, N., & Aguirre-Forero, S. (2021). Microbial diversity associated with spontaneous coffee bean fermentation process and specialty coffee production in northern Colombia. International Journal of Food Microbiology, 354, Article 109282. https://doi.org/10.1016/J.IJFOODMICRO.2021.109282
Custódio, V., Gonin, M., Stabl, G., Bakhoum, N., Oliveira, M. M., Gutjahr, C., & Castrillo, G. (2022). Sculpting the soil microbiota. The Plant Journal, 109(3), 508–522. https://doi.org/10.1111/TPJ.15568
Dastogeer, K. M. G., Tumpa, F. H., Sultana, A., Akter, M. A., & Chakraborty, A. (2020). Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 23, Article 100161. https://doi.org/10.1016/J.CPB.2020.100161
De Beenhouwer, M., Van Geel, M., Ceulemans, T., Muleta, D., Lievens, B., & Honnay, O. (2015). Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biology and Biochemistry, 91(1), 133–139. https://doi.org/10.1016/J.SOILBIO.2015.08.037
De Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., & De Vuyst, L. (2016). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1), Article e02398-16. https://doi.org/10.1128/AEM.02398-16
de Melo Pereira, G. V., da Silva Vale, A., de Carvalho Neto, D. P., Muynarsk, E. S. M., Soccol, V. T., & Soccol, C. R. (2020). Lactic acid bacteria: what coffee industry should know? Current Opinion in Food Science, 31, 1–8. https://doi.org/10.1016/j.cofs.2019.07.004
de Sousa, L. P., Guerreiro-Filho, O., & Mondego, J. M. C. (2022). The Rhizosphere microbiomes of five species of coffee trees. Microbiology Spectrum, 10(2), Article e00444-22. https://doi.org/10.1128/SPECTRUM.00444-22
Diniz Cogo, F., Gontijo Guimarães, P. T., Pouyú Rojas, E., Saggin Júnior, O. J., Siqueira, J. O., & Carbone Carneiro, M. A. (2017). Arbuscular mycorrhiza in Coffea arabica L.: Review and meta-analysis. Coffee Science, 12(3), 419–443. https://doi.org/10.25186/CS.V12I3.1227
do Céu Silva, M., Guerra-Guimarães, L., Diniz, I., Loureiro, A., Azinheira, H., Pereira, A. P., Tavares, S., Batista, D., & Várzea, V. (2022). An overview of the mechanisms involved in coffee-Hemileia vastatrix interactions: plant and pathogen perspectives. Agronomy, 12(2), Article 326. https://doi.org/10.3390/agronomy12020326
Duong, B., Marraccini, P., Maeght, J.-L., Vaast, P., Lebrun, M., & Duponnois, R. (2020). Coffee microbiota and its potential use in sustainable crop management. A review. Frontiers in Sustainable Food Systems, 4, Article 607935. https://doi.org/10.3389/fsufs.2020.607935
Duong, B., Nguyen, H. X., Phan, H. V., Colella, S., Trinh, P. Q., Hoang, G. T., Nguyen, T. T., Marraccini, P., Lebrun, M., & Duponnois, R. (2021). Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiological Research, 242, Article 126613. https://doi.org/10.1016/J.MICRES.2020.126613
Echeverria-Beirute, F., Murray, S. C., Klein, P., Kerth, C., Miller, R., & Bertrand, B. (2018). Rust and thinning management effect on cup quality and plant performance for two cultivars of Coffea arabica L. Journal of Agricultural and Food Chemistry, 66(21), 5281–5292. https://doi.org/10.1021/ACS.JAFC.7B03180
Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2020). The crucial role of yeasts in the wet fermentation of coffee beans and quality. International Journal of Food Microbiology, 333, Article 108796. https://doi.org/10.1016/J.IJFOODMICRO.2020.108796
Escudero-Leyva, E., Granados-Montero, M. del M., Orozco-Ortiz, C., Araya-Valverde, E., Alvarado-Picado, E., Chaves-Fallas, J. M., Aldrich-Wolfe, L., & Chaverri, P. (2023). The endophytobiome of wild Rubiaceae as a source of antagonistic fungi against the American Leaf Spot of coffee (Mycena citricolor). Journal of Applied Microbiology, 134(5), Article lxad090. https://doi.org/10.1093/JAMBIO/LXAD090
Ferraro, A. C., França, A. C., Machado, C. M. M., Aguiar, F. R., Oliveira, L. L., Braga Neto, A. M., & Oliveira, R. G. (2023). Commercial characteristics of coffee seedlings produced with different sources of phosphorus and plant growth-promoting bacteria. Brazilian Journal of Biology, 83, Article e270262. https://doi.org/10.1590/1519-6984.270262
Frąc, M., Hannula, S. E., Belka, M., & Jędryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, Article 707. https://doi.org/10.3389/fmicb.2018.00707
Fulthorpe, R., Martin, A. R., & Isaac, M. E. (2019). Root Endophytes of Coffee (Coffea arabica): Variation Across Climatic Gradients and Relationships with Functional Traits. Phytobiomes Journal, 4(1), 27–39. https://doi.org/10.1094/PBIOMES-04-19-0021-R
Genre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649–660. https://doi.org/10.1038/s41579-020-0402-3
González-Osorio, H., Góngora Botero, E. C., Medina Rivera, R. D., & Osorio Vega, N. W. (2020). Screening for phosphate-solubilizing fungi from Colombian andisols cultivated with coffee (Coffea arabica L.). Coffee Science, 15, Article e151666. https://doi.org/10.25186/.v15i.1666
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H.-S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206(1), 131–140. https://doi.org/10.1016/J.MICRES.2017.08.016
Granda-Mora, K. I., Araujo-Abad, S., Collahuazo-Reinoso, Y., López Salas, Y., Jaen Rigaud, X., Robles-Carrión, Á., & Urgiles-Gómez, N. (2021). Caracterización morfológica y fisiológica de microorganismos rizosféricos nativos de sistemas agroforestales de café. Bosques Latitud Cero, 10(2), 124–136. https://revistas.unl.edu.ec/index.php/bosques/article/view/832
Hernández-Acosta, E., Banuelos, J., & Trejo-Aguilar, D. (2021). Distribution and effect of mycorrhizal fungi in the coffee agroecosystem: A review. Revista de Biología Tropical, 69(2), 445–461. https://doi.org/10.15517/RBT.V69I2.42256
Hernando Posada, R., Sánchez de Prager, M., Heredia-Abarca, G., & Sieverding, E. (2018). Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities and diversities in coffee plantations in Colombia and Mexico. Agroforestry Systems, 92(2), 555–574. https://doi.org/10.1007/S10457-016-0030-0
International Coffee Organization. (2022). International Coffee Organization. Trade statistics tables. Total production by all exporting countries. https://www.ico.org/trade_statistics.asp?section=Statistics
Janse, J. M. (1897). Les endophytes radicaux de quelques plantes javanaises. Annales du Jardin botanique de Buitenzorg, 14, 53–201.
Jezeer, R. E., Santos, M. J., Boot, R. G. A., Junginger, M., & Verweij, P. A. (2018). Effects of shade and input management on economic performance of small-scale Peruvian coffee systems. Agricultural Systems, 162, 179–190. https://doi.org/10.1016/J.AGSY.2018.01.014
Jimenez-Salgado, T., Fuentes-Ramirez, L. E., Tapia-Hernandez, A., Mascarua-Esparza, M. A., Martinez-Romero, E., & Caballero-Mellado, J. (1997). Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing Acetobacteria. Applied and Environmental Microbiology, 63(9), 3676–3683. https://doi.org/10.1128/aem.63.9.3676-3683.1997
Jurburg, S. D., Shek, K. L., & McGuire, K. (2020). Soil microbial composition varies in response to coffee agroecosystem management. FEMS Microbiology Ecology, 96(9), Article fiaa164. https://doi.org/10.1093/FEMSEC/FIAA164
Kejela, T., Thakkar, V. R., & Thakor, P. (2016). Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology, 16(1), Article 277. https://doi.org/10.1186/s12866-016-0897-y
Krishnan, S., Pruvot-Woehl, S., Davis, A. P., Schilling, T., Moat, J., Solano, W., Al Hakimi, A., & Montagnon, C. (2021). Validating South Sudan as a center of origin for Coffea arabica: Implications for conservation and coffee crop improvement. Frontiers in Sustainable Food Systems, 5, Article 445. https://doi.org/10.3389/fsufs.2021.761611
Lamelas, A., Desgarennes, D., López-Lima, D., Villain, L., Alonso-Sánchez, A., Artacho, A., Latorre, A., Moya, A., & Carrión, G. (2020). The bacterial microbiome of Meloidogyne-based disease complex in coffee and tomato. Frontiers in Plant Science, 11, Article 136. https://doi.org/10.3389/fpls.2020.00136
Lemanceau, P., Blouin, M., Muller, D., & Moënne-Loccoz, Y. (2017). Let the core microbiota be functional. Trends in Plant Science, 22(7), 583–595. https://doi.org/10.1016/j.tplants.2017.04.008
Louzada Machado, J. L., Tomaz, M. A., Rodrigues da Luz, J. M., Moreira Osório, V., Vidal Costa, A., Colodetti, T. V., Grancieri Debona, D., & Louzada Pereira, L. (2022). Evaluation of genetic divergence of coffee genotypes using the volatile compounds and sensory attributes profile. Journal of Food Science, 87(1), 383–395. https://doi.org/10.1111/1750-3841.15986
Lovera, M., Cuenca, G., Fajardo, L., Cáceres, A., & Guerra-Sierra, B. E. (2022). AMF diversity in coffee and cacao agroforestry systems: Importance for crop productivity and forest conservation. In M. A. Lugo, & M. C. Pagano (Eds.), Mycorrhizal fungi in South America: Biodiversity, conservation, and sustainable food production (pp. 107–127). Springer, Cham. https://doi.org/10.1007/978-3-031-12994-0_5
Machado Martins, P. M., Nara Batista, N., da Cruz Pedroso Miguel, M. G., Pavesi Simão, J. B.., Ribeiro Soares, J., & Freitas Schwan, R. (2020). Coffee growing altitude influences the microbiota, chemical compounds and the quality of fermented coffees. Food Research International, 129, Article 108872. https://doi.org/10.1016/J.FOODRES.2019.108872
Mahatmanto, T., Sunarharum, W. B., Putri, F. A., Susanto, C. A., Davian, A. O., & Murdiyatmo, U. (2023). The microbiology of arabica and robusta coffee cherries: a comparative study of indigenous bacteria with presumptive impact on coffee quality. FEMS Microbiology Letters, 370, Article fnad024. https://doi.org/10.1093/femsle/fnad024
Martinez, S. J., Pereira Bressani, A. P., Pavasi Simão, J. B., Satler Pylro, V., Ribeiro Dias, D., & Freitas Schwan, R. (2022). Dominant microbial communities and biochemical profile of pulped natural fermented coffees growing in different altitudes. Food Research International, 159, Article 111605. https://doi.org/10.1016/j.foodres.2022.111605
Martinez, S. J., Pereira Bressani, A. P., Ribeiro Dias, D., Pavasi Simão, J. B., & Freitas Schwan, R. (2019). Effect of bacterial and yeast Starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Frontiers in Microbiology, 10, Article 1287. https://doi.org/10.3389/fmicb.2019.01287
Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., Bisht, J. K., Pattanayak, A., Naveed, M., & Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 107, 8–32. https://doi.org/10.1016/J.ECOLENG.2017.06.058
Morales-Ramos, V., Escamilla-Prado, E., Ruiz-Carbajal, R. A., Pérez-Sato, J. A., Velázquez-Morales, J. A., & Servín-Juárez, R. (2020). On the soil–bean–cup relationships in Coffea arabica L. Journal of the Science of Food and Agriculture, 100(15), 5434–5441. https://doi.org/10.1002/JSFA.10594
Moreno Reséndez, A., García Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68–83. https://doi.org/10.15446/REV.COLOMB.BIOTE.V20N1.73707
Mukharib, D., Rudragouda, Babou, C., Govindappa, M., Ramya, Gokavi, N., Mote, K., Manjunath, A., & Raghuramulu, Y. (2018). Establishment of Coffee Seedlings as Influenced by Planting Pit Size and Rock Phosphate along with Plant Growth Promoting Rhizobacteria Inoculations. International Journal of Plant & Soil Science, 21(3), 1–5. https://doi.org/10.9734/ijpss/2018/38955
Nguyen, D. N., Wang, S.-L., Nguyen, A. D., Doan, M. D., Tran, D. M., Nguyen, T. H., Ngo, V. A., Doan, C. T., Tran, T. N., Do, V. C., & Nguyen, V. B. (2021). Potential application of rhizobacteria isolated from the central highland of Vietnam as an effective biocontrol agent of robusta coffee nematodes and as a bio-fertilizer. Agronomy, 11(9), Article 1887. https://doi.org/10.3390/agronomy11091887
Nwachukwu, B. C., & Babalola, O. O. (2022). Metagenomics: A tool for exploring key microbiome with the potentials for improving sustainable agriculture. Frontiers in Sustainable Food Systems, 6, Article 886987. https://doi.org/10.3389/fsufs.2022.886987
Peñuela-Martínez, A. E., Velasquez-Emiliani, A. V., & Angel, C. A. (2023). Microbial diversity using a metataxonomic approach, associated with coffee fermentation processes in the department of Quindío, Colombia. Fermentation, 9(4), Article 343. https://doi.org/10.3390/fermentation9040343
Pereira Bressani, A. P., Martinez, S. J., Inácio Sarmento, A. B., Meira Borém, F., & Freitas Schwan, R. (2020). Organic acids produced during fermentation and sensory perception in specialty coffee using yeast starter culture. Food Research International, 128, Article 108773. https://doi.org/10.1016/j.foodres.2019.108773
Pimenta, C. J., Lima Angélico, C., & Chalfoun, S. M. (2018). Challengs in coffee quality: Cultural, chemical and microbiological aspects. Ciência e Agrotecnologia, 42(4), 337–349. https://doi.org/10.1590/1413-70542018424000118
Prates Júnior, P., Coutihno Moreira, B., Soares da Silva, M. de C., Reis Veloso, T. G., Stürmer, S. L., Alves Fernandes, R. B., de Sá Mendonça, E., & Megumi Kasuya, M. C. (2019). Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PloS One, 14(1), Article e0209093. https://doi.org/10.1371/JOURNAL.PONE.0209093
Prates Júnior, P., Reis Veloso, T. G., Soares da Silva, M. de C., Rodrigues da Luz, J. M., Oliveira, S. F., & Megumi Kasuya, M. C. (2021). Soil microorganisms and quality of the coffee beverage. In L. Louzada Pereira, & T. Rizzo Moreira (Eds.), Quality determinants in coffee production. food engineering series (pp. 101–147). Springer, Cham. https://doi.org/10.1007/978-3-030-54437-9_3
Rai, P. K., Singh, M., Anand, K., Saurabh, S., Kaur, T., Kour, D., Yadav, A. N., & Kumar, M. (2020). Chapter 4 - Role and potential applications of plant growth-promoting rhizobacteria for sustainable agriculture. In A. A. Rastegari, A. N. Yadav, & N. Yadav (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 49–60). Elsevier. https://doi.org/10.1016/B978-0-12-820526-6.00004-X
Ramos-Cabrera, E. V., Delgado-Espinosa, Z. Y., Murillo-Muñoz, R. A., Muños-Días, V. E., & Hoyos-García, J. (2021). Evaluación de bacterias endofíticas solubilizadores de fósforo en café, una alternativa sostenible. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(2), 94–107.
Ranjini, A. P., & Naika, R. (2019). Efficacy of biocontrol agents on Myrothecium roridum, the stem necrosis and leaf spot pathogen of coffee seedlings. Journal of Biopesticides, 12(1), 109–113.
Reis Evangelista, S., da Cruz Pedroso Miguel, M. G., Ferreira Silva, C., Marques Pinheiro, A. C., & Freitas Schwan, R. (2015) Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology, 210, 102–112. https://doi.org/10.1016/J.IJFOODMICRO.2015.06.008
Reis Veloso, T. G., Soares da Silva, M. de C., Soares Cardoso, W., Carvalho Guarçoni, R., Megumi Kasuya, M. C., & Louzada Pereira, L. (2020). Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Scientific Reports, 10(1), Article 14692. https://doi.org/10.1038/s41598-020-71309-y
Sagar, A., Rathore, P., Ramteke, P. W., Ramakrishna, W., Reddy, M. S., & Pecoraro, L. (2021). Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: key macromolecules and mechanisms. Microorganisms, 9(7), Article 1491. https://doi.org/10.3390/MICROORGANISMS9071491
Sahu, N., Vasu, D., Sahu, A., Lal, N., & Singh, S. K. (2017). Strength of microbes in nutrient cycling: A key to soil health. In V. S. Meena, P. K. Mishra, J. K. Bisht, & A. Pattanayak (Eds.), Agriculturally important microbes for sustainable agriculture. Volume I: Plant-soil-microbe nexus (pp. 69–86). Springer, Singapore. https://doi.org/10.1007/978-981-10-5589-8_4
Sahu, P. K., Singh, D. P., Prabha, R., Meena, K. K., & Abhilash, P. C. (2019). Connecting microbial capabilities with the soil and plant health: Options for agricultural sustainability. Ecological Indicators, 105, 601–612. https://doi.org/10.1016/j.ecolind.2018.05.084
Shaw, S., Le Cocq, K., Paszkiewicz, K., Moore, K., Winsbury, R., de Torres Zabala, M., Studholme, D. J., Salmon, D., Thornton, C. R., & Grant, M. R. (2016). Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Molecular Plant Pathology, 17(9), 1425–1441. https://doi.org/10.1111/MPP.12429
Siqueira, J. O., Saggin-Júnior, O. J., Flores-Aylas, W. W., & Guimarães, P. T. G. (1998). Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza, 7, 293–300. https://doi.org/10.1007/s005720050195
Soares da Silva, M. de C., Reis Veloso, T. G., Lorenzoni Entringer, T., Borchardt Bullergahn, V., Márcia Anastácio, L., Louzada Pereira, L., & Megumi Kasuya, M. C. (2020). Diversity of nitrogen-fixing bacteria in coffee crops (Coffea arabica L.). Revista Ifes Ciência, 6(3), 12–21. https://doi.org/10.36524/RIC.V6I3.852
Solis Pino, A. F., Delgado Espinosa, Z. Y., & Ramos Cabrera, E. V. (2023). Characterization of the rhizosphere bacterial microbiome and coffee bean fermentation in the Castillo-Tambo and bourbon varieties in the Popayán-Colombia Plateau. BMC Plant Biology, 23(1), Article 217. https://doi.org/10.1186/s12870-023-04182-2
Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants, 9(8), Article 1011. https://doi.org/10.3390/plants9081011
Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T. Y., O’Donnell, K., Roberson, R. W., Taylor, T. N., Uehling, J., Vilgalys, R., White, M. M., & Stajich, J. E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108(5), 1028–1046. https://doi.org/10.3852/16-042
Srigandha, D. D., Venkatesha, J., Shetty, G. R., Biradar, I. B., Manjunath, G., & Kulkarni, S. (2017). Study of suitability of containers and rooting media for growth and rooting of coffee seedlings (Coffea arabica cv. chandragiri). International Journal of Current Microbiology and Applied Sciences, 6(10), 527–530. https://doi.org/10.20546/ijcmas.2017.610.064
Sternhagen, E. C., Black, K. L., Hartmann, E. D. L., Gaya Shivega, W., Johnson, P. G., McGlynn, R. D., Schmaltz, L. C., Asheim Keller, R. J., Vink, S. N., & Aldrich-Wolfe, L. (2020). Contrasting patterns of functional diversity in coffee root fungal communities associated with organic and conventionally managed fields. Applied and Environmental Microbiology, 86(11), Article e00052-20. https://doi.org/10.1128/AEM.00052-20
Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Leskovar, D. I. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), Article 4859. https://doi.org/10.3390/SU12124859
Tolessa, K., D’heer, J., Duchateau, L., & Boeckx, P. (2017). Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. Journal of the Science of Food and Agriculture, 97(9), 2849–2857. https://doi.org/10.1002/JSFA.8114
Toniutti, L., Breitler, J.-C., Etienne, H., Campa, C., Doulbeau, S., Urban, L., Lambot, C., Pinilla, J.-C. H., & Bertrand, B. (2017). Influence of environmental conditions and genetic background of arabica coffee (C. arabica L) on leaf rust (Hemileia vastatrix) pathogenesis. Frontiers in Plant Science, 8, Article 2025. https://doi.org/10.3389/FPLS.2017.02025
Torrez, V., Benavides-Frias, C., Jacobi, J., & Ifejika Speranza, C. (2023). Ecological quality as a coffee quality enhancer. A review. Agronomy for Sustainable Development, 43(1), Article 19. https://doi.org/10.1007/s13593-023-00874-z
Ulhano Braga, A., Miranda, M. A., Aoyama, H., & Schmidt, F. L. (2023). Study on coffee quality improvement by self-induced anaerobic fermentation: Microbial diversity and enzymatic activity. Food Research International, 165, Article 112528. https://doi.org/10.1016/j.foodres.2023.112528
Urgiles-Gómez, N., Avila-Salem, M. E., Loján, P., Encalada, M., Hurtado, L., Araujo, S., Collahuazo, Y., Guachanamá, J., Poma, N., Granda, K., Robles, A., Senés, C., & Cornejo, P. (2021). Plant growth-promoting microorganisms in coffee production: from isolation to field application. Agronomy, 11(8), Article 1531. https://doi.org/10.3390/AGRONOMY11081531
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules, 21(5), Article 573. https://doi.org/10.3390/MOLECULES21050573
Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2019). Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports, 39(1), 3–17. https://doi.org/10.1007/S00299-019-02447-5
Zhang, S. J., De Bruyn, F., Pothakos, V., Contreras, G. F., Cai, Z., Moccand, C., Weckx, S., & De Vuyst, L. (2019). Influence of various processing parameters on the microbial community dynamics, metabolomic profiles, and cup quality during wet coffee processing. Frontiers in Microbiology, 10, Article 2621. https://doi.org/10.3389/FMICB.2019.02621
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 José Andrés Rojas-Chacón, Fabián Echeverría-Beirute, José Pablo Jiménez Madrigal, Andrés Gatica-Arias
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).