Effects of postharvest abiotic stress on the accumulation of bioactive compounds

Authors

DOI:

https://doi.org/10.15517/am.2024.60233

Keywords:

postharvest technology, funtional foods, fresh produce, antioxidants

Abstract

Introduction. Abiotic stress in plants has been studied for many years from agricultural and physiological perspective, generating interest in its application during postharvest stages to induce desirable changes as a basis for the development of functional foods. Objective. To investigate and synthesize information related to the application of postharvest abiotic stress treatments in fruits and vegetables in order to evaluate their impact on the bioactive compounds content. Development. This review was developed in Costa Rica from March 2023 to January 2024 and describes the main effects of applying controlled abiotic stress during postharvest. The includes physical damage, exposure to high or low temperature, application of chemical substances, and irradiation in fruits and vegetables, with special attention to the accumulation of bioactive compounds generated as defense substances or through secondary metabolism. Conclusions. The available information suggests an effect on the accumulation of bioactive compounds, the sensory and general quality of the product, the type of treatment used, and storage conditions. The application of treatments to induce controlled abiotic stress should consider the intensity of stress, as excessive levels hinder subsequent use of the material as raw input for developing functional foods. Therefore, studies on treatments that allows important accumulation of compounds of interest in a specific product, suitable for the use as an raw material in functional food development, should also adedess their effects on relevant quality aspects. Aditionally, the effects of time and storage conditions on the concentration and stability of these compounds should be considered.

Downloads

Download data is not yet available.

References

Alothman, M., Bhat, R., & Karim, A. A. (2009). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science and Emerging Technologies, 10(4), 512–516. https://doi.org/10.1016/j.ifset.2009.03.004

Amiri, S., Nicknam, Z., Radi, M., Sayadi, M., Bagheri, F., Karimi Khorrami, N., & Abedi, E. (2021). Postharvest quality of orange fruit as influenced by salicylic acid, acetic acid, and carboxymethyl cellulose coating. Journal of Food Measurement and Characterization, 15, 3912–3930. https://doi.org/10.1007/s11694-021-00966-y.

Amjad, M., Akhtar, S. S., Yang, A., Akhtar, J., & Jacobsen, S. E. (2015). Antioxidative response of quinoa exposed to iso-osmotic, ionic and non-ionic salt stress. Journal of Agronomy and Crop Science, 201(6), 452–460. https://doi.org/10.1111/jac.12140

Azam, M., Hameed, L., Qadri, R., Ejaz, S., Aslam, A., Khan, M. I., Shen, J., Zhang, J., Nafees, M., Ahmad, I., Ghani, M. A., Chen, J., & Anjum, N. (2021). Postharvest ascorbic acid application maintained physiological and antioxidant responses of guava (Psidium guajava L.) at ambient storage. Food Science and Technology, 41(3), 748–754. https://doi.org/10.1590/fst.19820

Becerra-Moreno, A., Redondo-Gil, M., Benavides, J., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2015). Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 6, Article 837. https://doi.org/10.3389/fpls.2015.00837

Ben-Yehoshua, S., Barak, E., & Shapiro, B. (1987). Postharvest curing at high temperatures reduces decay of individually sealed lemons, pomelos, and other citrus fruit. Journal of the American Society for Horticultural Science, 112(4), 658–663. https://doi.org/10.21273/jashs.112.4.658

Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I., & Periago, M. J. (2012). The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49(1), 296–302. https://doi.org/10.1016/j.foodres.2012.07.018

Caleb, O. J., Wegner, G., Rolleczek, C., Herppich, W. B., Geyer, M., & Mahajan, P. V. (2016). Hot water dipping: Impact on postharvest quality, individual sugars, and bioactive compounds during storage of ‘Sonata’ strawberry. Scientia Horticulturae, 210, 150–157. https://doi.org/10.1016/J.SCIENTA.2016.07.021

Carvajal-Campos, P., & Jiménez, V. (2021). Ingeniería genética contra estrés abiótico en cultivos neotropicales: osmolitos, factores de transcripción y CRISPR/Cas9. Revista Colombiana de Biotecnología, 23(2), 47–66. https://doi.org/10.15446/rev.colomb.biote.v23n2.88487

Chaudhary, P. R., Jayaprakasha, G. K., Porat, R., & Patil, B. S. (2014). Low temperature conditioning reduces chilling injury while maintaining quality and certain bioactive compounds of “Star Ruby” grapefruit. Food Chemistry, 153, 243–249. https://doi.org/10.1016/j.foodchem.2013.12.043

Chen, C., Sun, C., Wang, Y., Gong, H., Zhang, A., Yang, Y., Guo, F., Cui, K., Fan, X., & Li, X. (2023). The preharvest and postharvest application of salicylic acid and its derivatives on storage of fruit and vegetables: A review. Scientia Horticulturae, 312, Article 111858. https://doi.org/10.1016/j.scienta.2023.111858

Cisneros-Zevallos, L. (2003). The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. Journal of Food Science, 68(5), 1560–1565. https://doi.org/10.1111/j.1365-2621.2003.tb12291.x

Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2020). Controlled abiotic stresses revisited: From homeostasis through hormesis to extreme stresses and the impact on nutraceuticals and quality during pre- and postharvest applications in horticultural crops. Journal of Agricultural and Food Chemistry, 68(43), 11877–11879. https://doi.org/10.1021/acs.jafc.0c06029

Crupi, P., Pichierri, A., Basile, T., & Antonacci, D. (2013). Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chemistry, 141(2), 802–808. https://doi.org/10.1016/j.foodchem.2013.03.055

Delate, K. M., & Brecht, J. K. (1989). Quality of tropical sweet potatoes exposed to controlled-atmosphere treatments for postharvest insect control. Journal of the American Society for Horticultural Science, 114(6), 963–968. https://doi.org/10.21273/jashs.114.6.963

Duarte-Sierra, A., Forney, C. F., Michaud, D., Angers, P., & Arul, J. (2017). Influence of hormetic heat treatment on quality and phytochemical compounds of broccoli florets during storage. Postharvest Biology and Technology, 128, 44–53. https://doi.org/10.1016/J.POSTHARVBIO.2017.01.017

Duarte-Sierra, A., Tiznado-Hernández, M. E., Jha, D. K., Janmeja, N., & Arul, J. (2020). Abiotic stress hormesis: An approach to maintain quality, extend storability, and enhance phytochemicals on fresh produce during postharvest. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3659–3682. https://doi.org/10.1111/1541-4337.12628

Giménez, M. J., Valverde, J. M., Valero, D., Zapata, P. J., Castillo, S., & Serrano, M. (2016). Postharvest methyl salicylate treatments delay ripening and maintain quality attributes and antioxidant compounds of “Early Lory” sweet cherry. Postharvest Biology and Technology, 117, 102–109. https://doi.org/10.1016/j.postharvbio.2016.02.006

González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A. A., & Ayala-Zavala, J. F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), 197–202. https://doi.org/10.1111/j.1750-3841.2007.00295.x

Habibi, F., Ramezanian, A., Guillén, F., Serrano, M., & Valero, D. 2020. Blood oranges maintain bioactive compounds and nutritional quality by postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate during cold storage. Food Chemistry, 306, Article 125634. https://doi.org/10.1016/j.foodchem.2019.125634.

Hagen, S. F., Borge, G. I. A., Bengtsson, G. B., Bilger, W., Berge, A., Haffner, K., & Solhaug, K. A. (2007). Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): Effect of postharvest UV-B irradiation. Postharvest Biology and Technology, 45(1), 1–10. https://doi.org/10.1016/j.postharvbio.2007.02.002

Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biology and Technology, 51(2), 242–249. https://doi.org/10.1016/j.postharvbio.2008.07.001

Jacobo-Velázquez, D. A., & Cisneros-Zevallos, L. (2018). An alternative use of horticultural crops: Stressed plants as biofactories of bioactive glucosinolate and phenolic compounds. Acta Horticulturae, 1194, 947–952. https://doi.org/10.17660/ActaHortic.2018.1194.134

Jacobo-Velázquez, D. A., Martínez-Hernández, G., Rodríguez, S. D. C., Cao, C.-M., & Cisneros-Zevallos, L. (2011). Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry, 59(12), 6583–6593. https://doi.org/10.1021/jf2006529

Jacobo-Velázquez, D. A., Santana-Gálvez, J., & Cisneros-Zevallos, L. (2021). Designing next-generation functional food and beverages: Combining nonthermal processing technologies and postharvest abiotic stresses. Food Engineering Reviews, 13, 592–600. https://doi.org/10.1007/s12393-020-09244-x/Published

Liu, C., Han, X., Cai, L., Lu, X., Ying, T., & Jiang, Z. (2011). Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biology and Technology, 59(3), 232–237. https://doi.org/10.1016/j.postharvbio.2010.09.003

Lo’ay, A. A., & Taher, M. A. (2018). Influence of edible coatings chitosan/PVP blending with salicylic acid on biochemical fruit skin browning incidence and shelf life of guava fruits cv. ‘Banati’. Scientia Horticulturae, 235, 424–436. https://doi.org/10.1016/j.scienta.2018.03.008

Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology, 14(3), 257–269. https://doi.org/10.1016/S0925-5214(98)00045-3

Lurie, S., & Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research, 1, Article 14030. https://doi.org/10.1038/hortres.2014.30

Mellidou, I., Koukounaras, A., Kostas, S., Patelou, E., & Kanellis, A. K. (2021). Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes, 12(5), Article 694. https://doi.org/10.3390/genes12050694

Méndez Adorno, J. M. (2012). Suspensión del riego en caña de azúcar durante la maduración: efecto en el rendimiento y calidad del jugo [Tesis de Maestría, Colegio de Postgraduados]. Red de Repositorios Latinoamericanos. https://repositorioslatinoamericanos.uchile.cl/handle/2250/7506301?show=full

Nunes, C., García, J. M., Manso, T., Torres, R., Olmo, M., & Usall, J. (2007). Effects of postharvest curing treatment on quality of citrus fruit. Journal of Fruit and Ornamental Plant Research, 66(1), 213–220. https://doi.org/10.2478/v10032-007-0024-6

Ochoa-Velasco, C. E., Avila-Sosa, R., Navarro-Cruz, A. R., López-Malo, A., & Palou, E. (2017). Chapter 9 - Biotic and abiotic factors to increase bioactive compounds in fruits and vegetables. In A. M. Grumezescu, & A. M. Holban (Eds.), Food Bioconversion (Vol. 2, pp. 317–349). Elsevier. https://doi.org/10.1016/B978-0-12-811413-1.00009-7

Pataro, G., Donsi, G., & Ferrari, G. (2015). Post-harvest UV-C and PL irradiation of fruits and vegetables. Chemical Engineering Transactions, 44, 31–36. https://doi.org/10.3303/CET1544006

Pedreschi, R., & Lurie, S. (2015). Advances and current challenges in understanding postharvest abiotic stresses in perishables. Postharvest Biology and Technology, 107, 77–89. https://doi.org/10.1016/j.postharvbio.2015.05.004

Rivera-Pastrana, D. M., Gardea, A. A., Yahia, E. M., Martínez-Téllez, M. A., & González-Aguilar, G. A. (2014). Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit. Journal of Food Science and Technology, 51(12), 3821–3829. https://doi.org/10.1007/s13197-013-0942-x

Sugri, I., Maalekuu, B. K., Gaveh, E., & Kusi, F. (2019). Compositional and shelf-life indices of sweet potato are significantly improved by pre-harvest dehaulming. Annals of Agricultural Sciences, 64(1), 113–120. https://doi.org/10.1016/j.aoas.2019.03.002

Syukri, D., & Chamel, A. (2021). The enhancement of phytochemical compounds in fresh produces by abiotic stress application at postharvest handling stage. Andalasian International Journal of Agricultural and Natural Sciences, 2(1), 1–19. http://aijans.lppm.unand.ac.id/index.php/aijans/article/view/11

Torres-Contreras, A. M., & Jacobo-Velázquez, D. A. (2021). Effects of wounding stress and storage temperature on the accumulation of chlorogenic acid isomers in potatoes (Solanum tuberosum). Applied Sciences, 11(13), Article 8891. https://doi.org/10.3390/app11198891

Torres-Contreras, A. M., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2014). Plants as biofactories: Stress-induced production of chlorogenic acid isomers in potato tubers as affected by wounding intensity and storage time. Industrial Crops and Products, 62, 61–66. https://doi.org/10.1016/j.indcrop.2014.08.018

Vicente, A. R., Martínez, G. A., Chaves, A. R., & Civello, P. M. (2006). Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biology and Technology, 40(2), 116–122. https://doi.org/10.1016/J.POSTHARVBIO.2005.12.012

Villarreal-García, D., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2016). Plants as biofactories: Postharvest stress-induced accumulation of phenolic compounds and glucosinolates in broccoli subjected to wounding stress and exogenous phytohormones. Frontiers in Plant Science, 7, Article 45. https://doi.org/10.3389/FPLS.2016.00045

Zhang, D., Yu, B., Bai, J., Qian, M., Shu, Q., Su, J., & Teng, Y. (2012). Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in “Yunhongli No. 1” (Pyrus pyrifolia Nakai) pears. Scientia Horticulturae, 134, 53–59. https://doi.org/10.1016/j.scienta.2011.10.025

Published

2024-12-09

How to Cite

De la Asunción-Romero, R., Jiménez Elizondo, N., & Morales Herrera, I. (2024). Effects of postharvest abiotic stress on the accumulation of bioactive compounds. Agronomía Mesoamericana, 35(Especial 1), 60233. https://doi.org/10.15517/am.2024.60233

Most read articles by the same author(s)