Efectos del estrés abiótico aplicado en postcosecha sobre la acumulación de compuestos bioactivos

Autores/as

DOI:

https://doi.org/10.15517/am.2024.60233

Palabras clave:

tecnología postcosecha, alimentos funcionales, productos frescos de origen vegetal, antioxidantes

Resumen

Introducción. El estrés abiótico en plantas ha sido estudiado por muchos años desde una perspectiva agrícola y fisiológica, genera interés su aplicación en postcosecha con la finalidad de inducir cambios deseables como base para el desarrollo de alimentos funcionales. Objetivo. Investigar y sintetizar la información relacionada con la aplicación de tratamientos de estrés abiótico en postcosecha en frutas y vegetales a fin de evaluar su impacto en el contenido de compuestos bioactivos. Desarrollo. La revisión se desarrolló en Costa Rica de marzo de 2023 a enero de 2024, y describe los principales efectos de la aplicación en postcosecha de estrés abiótico controlado inducido por daño físico, temperaturas altas o bajas, aplicación de sustancias químicas e irradiación en frutas y vegetales, con especial atención a la acumulación de compuestos bioactivos generados como sustancias de defensa por el metabolismo secundario. Conclusiones. La información disponible da evidencia de un efecto en la acumulación de compuestos bioactivos, y los efectos generados dependen del producto, tipo de tratamiento e intensidad, y las condiciones del almacenamiento posterior. La aplicación de tratamientos con la finalidad de inducir estrés abiótico conlleva, además, efectos en otras características que, según la intensidad, pueden dificultar el uso posterior del material como materia prima para el desarrollo de alimentos funcionales. Por ello, el estudio de los tratamientos que permitan una acumulación importante de sustancias de interés en un determinado producto, que luego pueda ser utilizado como una materia prima mejorada para el desarrollo de alimentos funcionales, deberá incluir también los efectos sobre aspectos de calidad relevantes. Deberá considerarse el efecto del tiempo y condiciones de almacenamiento sobre la concentración de las sustancias de interés y el posible efecto de condiciones de procesamiento sobre su estabilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alothman, M., Bhat, R., & Karim, A. A. (2009). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science and Emerging Technologies, 10(4), 512–516. https://doi.org/10.1016/j.ifset.2009.03.004

Amiri, S., Nicknam, Z., Radi, M., Sayadi, M., Bagheri, F., Karimi Khorrami, N., & Abedi, E. (2021). Postharvest quality of orange fruit as influenced by salicylic acid, acetic acid, and carboxymethyl cellulose coating. Journal of Food Measurement and Characterization, 15, 3912–3930. https://doi.org/10.1007/s11694-021-00966-y.

Amjad, M., Akhtar, S. S., Yang, A., Akhtar, J., & Jacobsen, S. E. (2015). Antioxidative response of quinoa exposed to iso-osmotic, ionic and non-ionic salt stress. Journal of Agronomy and Crop Science, 201(6), 452–460. https://doi.org/10.1111/jac.12140

Azam, M., Hameed, L., Qadri, R., Ejaz, S., Aslam, A., Khan, M. I., Shen, J., Zhang, J., Nafees, M., Ahmad, I., Ghani, M. A., Chen, J., & Anjum, N. (2021). Postharvest ascorbic acid application maintained physiological and antioxidant responses of guava (Psidium guajava L.) at ambient storage. Food Science and Technology, 41(3), 748–754. https://doi.org/10.1590/fst.19820

Becerra-Moreno, A., Redondo-Gil, M., Benavides, J., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2015). Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 6, Article 837. https://doi.org/10.3389/fpls.2015.00837

Ben-Yehoshua, S., Barak, E., & Shapiro, B. (1987). Postharvest curing at high temperatures reduces decay of individually sealed lemons, pomelos, and other citrus fruit. Journal of the American Society for Horticultural Science, 112(4), 658–663. https://doi.org/10.21273/jashs.112.4.658

Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I., & Periago, M. J. (2012). The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49(1), 296–302. https://doi.org/10.1016/j.foodres.2012.07.018

Caleb, O. J., Wegner, G., Rolleczek, C., Herppich, W. B., Geyer, M., & Mahajan, P. V. (2016). Hot water dipping: Impact on postharvest quality, individual sugars, and bioactive compounds during storage of ‘Sonata’ strawberry. Scientia Horticulturae, 210, 150–157. https://doi.org/10.1016/J.SCIENTA.2016.07.021

Carvajal-Campos, P., & Jiménez, V. (2021). Ingeniería genética contra estrés abiótico en cultivos neotropicales: osmolitos, factores de transcripción y CRISPR/Cas9. Revista Colombiana de Biotecnología, 23(2), 47–66. https://doi.org/10.15446/rev.colomb.biote.v23n2.88487

Chaudhary, P. R., Jayaprakasha, G. K., Porat, R., & Patil, B. S. (2014). Low temperature conditioning reduces chilling injury while maintaining quality and certain bioactive compounds of “Star Ruby” grapefruit. Food Chemistry, 153, 243–249. https://doi.org/10.1016/j.foodchem.2013.12.043

Chen, C., Sun, C., Wang, Y., Gong, H., Zhang, A., Yang, Y., Guo, F., Cui, K., Fan, X., & Li, X. (2023). The preharvest and postharvest application of salicylic acid and its derivatives on storage of fruit and vegetables: A review. Scientia Horticulturae, 312, Article 111858. https://doi.org/10.1016/j.scienta.2023.111858

Cisneros-Zevallos, L. (2003). The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. Journal of Food Science, 68(5), 1560–1565. https://doi.org/10.1111/j.1365-2621.2003.tb12291.x

Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2020). Controlled abiotic stresses revisited: From homeostasis through hormesis to extreme stresses and the impact on nutraceuticals and quality during pre- and postharvest applications in horticultural crops. Journal of Agricultural and Food Chemistry, 68(43), 11877–11879. https://doi.org/10.1021/acs.jafc.0c06029

Crupi, P., Pichierri, A., Basile, T., & Antonacci, D. (2013). Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chemistry, 141(2), 802–808. https://doi.org/10.1016/j.foodchem.2013.03.055

Delate, K. M., & Brecht, J. K. (1989). Quality of tropical sweet potatoes exposed to controlled-atmosphere treatments for postharvest insect control. Journal of the American Society for Horticultural Science, 114(6), 963–968. https://doi.org/10.21273/jashs.114.6.963

Duarte-Sierra, A., Forney, C. F., Michaud, D., Angers, P., & Arul, J. (2017). Influence of hormetic heat treatment on quality and phytochemical compounds of broccoli florets during storage. Postharvest Biology and Technology, 128, 44–53. https://doi.org/10.1016/J.POSTHARVBIO.2017.01.017

Duarte-Sierra, A., Tiznado-Hernández, M. E., Jha, D. K., Janmeja, N., & Arul, J. (2020). Abiotic stress hormesis: An approach to maintain quality, extend storability, and enhance phytochemicals on fresh produce during postharvest. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3659–3682. https://doi.org/10.1111/1541-4337.12628

Giménez, M. J., Valverde, J. M., Valero, D., Zapata, P. J., Castillo, S., & Serrano, M. (2016). Postharvest methyl salicylate treatments delay ripening and maintain quality attributes and antioxidant compounds of “Early Lory” sweet cherry. Postharvest Biology and Technology, 117, 102–109. https://doi.org/10.1016/j.postharvbio.2016.02.006

González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A. A., & Ayala-Zavala, J. F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), 197–202. https://doi.org/10.1111/j.1750-3841.2007.00295.x

Habibi, F., Ramezanian, A., Guillén, F., Serrano, M., & Valero, D. 2020. Blood oranges maintain bioactive compounds and nutritional quality by postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate during cold storage. Food Chemistry, 306, Article 125634. https://doi.org/10.1016/j.foodchem.2019.125634.

Hagen, S. F., Borge, G. I. A., Bengtsson, G. B., Bilger, W., Berge, A., Haffner, K., & Solhaug, K. A. (2007). Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): Effect of postharvest UV-B irradiation. Postharvest Biology and Technology, 45(1), 1–10. https://doi.org/10.1016/j.postharvbio.2007.02.002

Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biology and Technology, 51(2), 242–249. https://doi.org/10.1016/j.postharvbio.2008.07.001

Jacobo-Velázquez, D. A., & Cisneros-Zevallos, L. (2018). An alternative use of horticultural crops: Stressed plants as biofactories of bioactive glucosinolate and phenolic compounds. Acta Horticulturae, 1194, 947–952. https://doi.org/10.17660/ActaHortic.2018.1194.134

Jacobo-Velázquez, D. A., Martínez-Hernández, G., Rodríguez, S. D. C., Cao, C.-M., & Cisneros-Zevallos, L. (2011). Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry, 59(12), 6583–6593. https://doi.org/10.1021/jf2006529

Jacobo-Velázquez, D. A., Santana-Gálvez, J., & Cisneros-Zevallos, L. (2021). Designing next-generation functional food and beverages: Combining nonthermal processing technologies and postharvest abiotic stresses. Food Engineering Reviews, 13, 592–600. https://doi.org/10.1007/s12393-020-09244-x/Published

Liu, C., Han, X., Cai, L., Lu, X., Ying, T., & Jiang, Z. (2011). Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biology and Technology, 59(3), 232–237. https://doi.org/10.1016/j.postharvbio.2010.09.003

Lo’ay, A. A., & Taher, M. A. (2018). Influence of edible coatings chitosan/PVP blending with salicylic acid on biochemical fruit skin browning incidence and shelf life of guava fruits cv. ‘Banati’. Scientia Horticulturae, 235, 424–436. https://doi.org/10.1016/j.scienta.2018.03.008

Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology, 14(3), 257–269. https://doi.org/10.1016/S0925-5214(98)00045-3

Lurie, S., & Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research, 1, Article 14030. https://doi.org/10.1038/hortres.2014.30

Mellidou, I., Koukounaras, A., Kostas, S., Patelou, E., & Kanellis, A. K. (2021). Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes, 12(5), Article 694. https://doi.org/10.3390/genes12050694

Méndez Adorno, J. M. (2012). Suspensión del riego en caña de azúcar durante la maduración: efecto en el rendimiento y calidad del jugo [Tesis de Maestría, Colegio de Postgraduados]. Red de Repositorios Latinoamericanos. https://repositorioslatinoamericanos.uchile.cl/handle/2250/7506301?show=full

Nunes, C., García, J. M., Manso, T., Torres, R., Olmo, M., & Usall, J. (2007). Effects of postharvest curing treatment on quality of citrus fruit. Journal of Fruit and Ornamental Plant Research, 66(1), 213–220. https://doi.org/10.2478/v10032-007-0024-6

Ochoa-Velasco, C. E., Avila-Sosa, R., Navarro-Cruz, A. R., López-Malo, A., & Palou, E. (2017). Chapter 9 - Biotic and abiotic factors to increase bioactive compounds in fruits and vegetables. In A. M. Grumezescu, & A. M. Holban (Eds.), Food Bioconversion (Vol. 2, pp. 317–349). Elsevier. https://doi.org/10.1016/B978-0-12-811413-1.00009-7

Pataro, G., Donsi, G., & Ferrari, G. (2015). Post-harvest UV-C and PL irradiation of fruits and vegetables. Chemical Engineering Transactions, 44, 31–36. https://doi.org/10.3303/CET1544006

Pedreschi, R., & Lurie, S. (2015). Advances and current challenges in understanding postharvest abiotic stresses in perishables. Postharvest Biology and Technology, 107, 77–89. https://doi.org/10.1016/j.postharvbio.2015.05.004

Rivera-Pastrana, D. M., Gardea, A. A., Yahia, E. M., Martínez-Téllez, M. A., & González-Aguilar, G. A. (2014). Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit. Journal of Food Science and Technology, 51(12), 3821–3829. https://doi.org/10.1007/s13197-013-0942-x

Sugri, I., Maalekuu, B. K., Gaveh, E., & Kusi, F. (2019). Compositional and shelf-life indices of sweet potato are significantly improved by pre-harvest dehaulming. Annals of Agricultural Sciences, 64(1), 113–120. https://doi.org/10.1016/j.aoas.2019.03.002

Syukri, D., & Chamel, A. (2021). The enhancement of phytochemical compounds in fresh produces by abiotic stress application at postharvest handling stage. Andalasian International Journal of Agricultural and Natural Sciences, 2(1), 1–19. http://aijans.lppm.unand.ac.id/index.php/aijans/article/view/11

Torres-Contreras, A. M., & Jacobo-Velázquez, D. A. (2021). Effects of wounding stress and storage temperature on the accumulation of chlorogenic acid isomers in potatoes (Solanum tuberosum). Applied Sciences, 11(13), Article 8891. https://doi.org/10.3390/app11198891

Torres-Contreras, A. M., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2014). Plants as biofactories: Stress-induced production of chlorogenic acid isomers in potato tubers as affected by wounding intensity and storage time. Industrial Crops and Products, 62, 61–66. https://doi.org/10.1016/j.indcrop.2014.08.018

Vicente, A. R., Martínez, G. A., Chaves, A. R., & Civello, P. M. (2006). Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biology and Technology, 40(2), 116–122. https://doi.org/10.1016/J.POSTHARVBIO.2005.12.012

Villarreal-García, D., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2016). Plants as biofactories: Postharvest stress-induced accumulation of phenolic compounds and glucosinolates in broccoli subjected to wounding stress and exogenous phytohormones. Frontiers in Plant Science, 7, Article 45. https://doi.org/10.3389/FPLS.2016.00045

Zhang, D., Yu, B., Bai, J., Qian, M., Shu, Q., Su, J., & Teng, Y. (2012). Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in “Yunhongli No. 1” (Pyrus pyrifolia Nakai) pears. Scientia Horticulturae, 134, 53–59. https://doi.org/10.1016/j.scienta.2011.10.025

Publicado

2024-12-09

Cómo citar

De la Asunción-Romero, R., Jiménez Elizondo, N., & Morales Herrera, I. (2024). Efectos del estrés abiótico aplicado en postcosecha sobre la acumulación de compuestos bioactivos. Agronomía Mesoamericana, 35(Especial 1), 60233. https://doi.org/10.15517/am.2024.60233

Número

Sección

Revisiones bibliográficas

Artículos más leídos del mismo autor/a