Methane production and digestibility of kikuyu grass (Pennisetum clandestinum) and potato (Solanum tuberosum) mixtures.

Authors

  • Sandra Lucía Posada-Ochoa Universidad de Antioquia, Grupo de Investigación en Ciencias Agrarias-GRICA
  • John Fredy Ramírez-Agudelo Universidad de Antioquia, Grupo de Investigación en Ciencias Agrarias-GRICA
  • Ricardo Rosero-Noguera Universidad de Antioquia, Grupo de Investigación en Ciencias Agrarias-GRICA

DOI:

https://doi.org/10.15517/am.v25i1.14214

Keywords:

non-structural carbohydrates, methanogenesis, in vitro gas production technique.

Abstract

The objective of this study was to evaluate the effect of the mixture of different ratios of kikuyu grass (Pennisetum clandestinum) (K) – potato (Solanum tuberosum) (P) on methane production in vitro, during the second semester of 2012 in the University Research Center (Medellín, Colombia). The treatments consisted of mixtures K/P in ratios of 100/0 (T1), 75/25 (T2) and 50/50% (T3). The results were processed through a repeated measures analysis over time and nonlinear regression. At the end of incubation period (between 0 and 48 hours), the cumulative gas production (ml/g MSi), the cumulative methane production (ml/g MSi) and the dry matter digestibility were statistically differents (p<0.05) among all treatments, increasing with higher levels of potato in the mixture. In the same time interval, the relationship between dry matter digestibility and cumulative production of gas and methane (mg/ml) was statistically equivalent (p>0.05) among all treatments. The final volume of gas and methane (Vf) and its rate of production throughout the fermentation process (k), estimated from the Gompertz model, were also higher (p<0.05) for treatments including potato. Increased methane production is the result of higher dry matter digestibility according CNE level increases in the mixture. Under the in vitro model and in contrast to literature reports, the greater inclusion of CNE did not reduce methane production.

Downloads

Download data is not yet available.

References

Apráez, J.E., J.M. Delgado, y J.P. Narváez. 2012. Composición

nutricional, degradación in vitro y potencial de producción de gas de herbáceas, arbóreas y arbustivas encontradas en el trópico alto de Nariño. Livestock Research for Rural Development 24 (44). http://www.lrrd.org/lrrd24/3/apra24044.htm (Consultado 20 ene. 2013).

Arcuri, P.B., F.C. Ferraz, y J.C. Carneiro. 2006. Microbiologia

do rúmen. En: T.T. Berchielli, A.V. Pires, y S.G. Oliveira, editores, Nutrição de ruminantes. FUNEP, Sao Paulo, Brasil. p. 111-150.

Betancourt, J.E., H.B. Cuastumal, S.P. Rodríguez, J.F. Navia,

y E.G. Insuasty. 2012. Alimentación de vacas holstein con suplemento de papa de desperdicio (Solanum tuberosum) y acacia negra (Acacia decurrens), y su efecto en la calidad de leche. Investig. Pecu. 1(2): 41-51.

Blaut, M. 1994. Metabolism of methanogens. Antonie van

Leeuwenhoek 66(1-3):187-208.

Chai, W.Z., Ah. Van Gelder, y J.W. Cone. 2004. Relationship

between gas production and starch degradation in feed samples. Animal Feed Science and Technology 114(1):195-204.

Cone, J.W., W. Cline-Theil, A. Malestein, y A. Klooster. 1989. Degradation of starch by incubation with rumen fluid. A comparison of different starch sources. Journal of the Science of Food and Agriculture 49(2):173-183.

Doreau, M., H.M.G. Van Der, D. Micol, H. Dubroeucq, J. Agabriel, Y. Rochette, y C. Martin. 2011. Enteric methane production and greenhouse gases balance of diets differing in concentrate in the fattening phase of a beef production system. Journal of Animal Science 89(8):2518-2528, doi:10.2527/jas.2010-3140.

Dryden, G. McL. 2008. Animal nutrition science. CABI,

Cambridge, UK.

Feng, P., W.H. Hoover, T.K. Miller, y R. Blauwiekel. 1993. Interactions of fiber and nonstructural carbohydrates on lactation and ruminal function. Journal of Dairy Science 76(5):1324-1333.

Firdous, R., y A.H. Gilani. 2002. Prediction of dry matter

digestibility of maize (Zea mays) fodder from chemical composition. Pakistan Journal of Agricultural Sciencies 39(1):56-62.

IDEAM (Instituto de Hidrología, Meteorología y Estudios

Ambientales). 1999. Cartas climatológicas mensuales,

Aeropuerto Olaya Herrera (Medellín). Disponible en http://bart.ideam.gov.co/cliciu/mede/temperatura.htm

(Consultado 1 mar. 2013).

Johnson, K.A., y D.E. Johnson. 1995. Methane emissions

from cattle. Journal of Animal Science 73(8):2483-2492.

Johnson, D.E., y G.M. Ward. 1996. Estimates of animal

methane emissions. Environmental Monitoring and Assessment 42(1-2):133-141.

Krause, K.M., y D.K. Combs. 2003. Effects of forage particle size, forage source and grain fermentability on performance and ruminal ph in midlactation cows. Journal of Dairy Science 86(4):1382-1397.

Kurihara, M., T. Magner, R.A. Hunter, y G.J. Mccrabb.

Methane production and energy partition of cattle in the tropics. British Journal of Nutrition 81(3):227-234.

López, S., M.D. Carro, J.S. González, y F.J. Ovejero. 1998.

Comparison of different in vitro and in situ methods to estimate the extent and rate of degradation of hays in the rumen. Animal Feed Science and Technology 73(1-2):99-113.

López, S., y C.J. Newbold. 2007. Analysis of methane. En:

H.P.S. Makkar, y P.E. Vercoe, editores, Measuring methane production from ruminants. IAEA, FAO, Springer, Dordrecht, The Netherlands. p. 1-13.

Mahyuddin, P. 2008. Relationship between chemical

component and in vitro digestibility of tropical grasses. Journal of Biosciences 15(2):85-89.

Martin, C., D.P. Morgavi, y M. Doreau. 2010. Methane

mitigation in ruminants: From microbe to the farm scale. Animal 4(3):351-365.

Mc Dougall, E.I. 1948. The composition and output of sheep’s saliva. Biochemical Journal 43(1):99-109.

Menke, K.H., L. Raab, A. Salewski, H. Steingass, D. Fritz, y W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal Agricultural Science 93(1):217-222.

Montoya, N.F., I.D. Pino, y H.J. Correa. 2003. Efecto de la

suplementación con diferentes niveles de papa sobre algunos parámetros productivos y metabólicos en vacas lactantes. Rev. Col. Cienc. Pec. 16(4) (Supl):71.

Montoya, N.F., I.D. Pino, y H.J. Correa. 2004. Evaluación de la suplementación con papa (Solanum tuberosum) durante la lactancia en vacas Holstein. Rev. Col. Cienc. Pec. 17(3):241-249.

Navarro-Villa, A., M. O’brien, S. Lopez, T.M. Boland, y P. O’kiely. 2011. Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs. Animal Feed Science and Technology 166-167:163-174.

Noguera, R.R., E.O. Saliba, y R.M. Mauricio. 2004. Comparación de modelos matemáticos para estimar los parámetros de degradación obtenidos a través de la técnica de producción de gas. Livestock Research for Rural Development 16 (11). http://www.lrrd.org/lrrd16/11/nogu16086.htm (Consultado 15 oct. 2013).

Noguera, R.R., I.C. Ramírez, y D.M. Bolívar. 2006. Efecto de la inclusión de papa (Solanum tuberosum) en la cinética de fermentación in vitro del pasto kikuyo (Pennisetum clandestinum). Livestock Research for Rural Development 18(62). http://www.lrrd.org/lrrd18/5/nogu18062.htm (Consultado 5 ene. 2013).

Nussio, L.G., F.P. Campos, y M.L. Moreira. 2006. Metabolismo de carboidratos estruturais. En: T.T. Berchielli, A.V. Pires, y S.G. Oliveira, editores, Nutrição de ruminantes. FUNEP, Sao Paulo, Brasil. p. 183-228.

Posada, S.L., y R.R. Noguera. 2005. Técnica in vitro de

producción de gases: Una herramienta para la evaluación

de alimentos para rumiantes. Livestock Research for Rural Development 17(36). http://www.lrrd.org/lrrd17/4/posa17036.htm (Consultado 7 feb. 2013).

Posada, S.L., R.R. Noguera, y D.M. Bolívar. 2006. Relación entre presión y volumen para la implementación de la técnica in vitro de producción de gases en Medellín, Colombia. Revista Colombiana de Ciencias Pecuarias 19(4):407-414.

Resende, K.T., I.A. Almeida, y M.H. Machado, MH. 2006. Metabolismo de energia. En: T.T. Berchielli, A.V. Pires, y S.G. Oliveira, editores, Nutrição de ruminantes. FUNEP, Sao Paulo, Brasil. p. 311-332.

SAS Institute. 2001. SAS/STAT: Guide for personal computer. Versión 8.2. SAS Inst., Cary, NY, USA.

Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. Mcallan, y J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48(3-4):185-197.

Valadares Filho, S.C., y D. Santos Pina. 2006. Fermentaçao

ruminal. En: T.T. Berchielli, A.V. Pires, y S.G. Oliveira, editores, Nutrição de ruminantes. FUNEP, Sao Paulo, Brasil. p. 151-182.

Van Soest, P.J. 1994. Nutritional ecology of the ruminant. 2nd

ed. Cornell University Press, New York, USA.

Wolin, M.J., y T.L. Miller. 2006. Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors. International Congress Series 1293:131-137.

How to Cite

Posada-Ochoa, S. L., Ramírez-Agudelo, J. F., & Rosero-Noguera, R. (2014). Methane production and digestibility of kikuyu grass (Pennisetum clandestinum) and potato (Solanum tuberosum) mixtures. Agronomía Mesoamericana, 25(1), 141–150. https://doi.org/10.15517/am.v25i1.14214