Disinfection effect of nodal segments from Vanilla planifolia Andrews on the morphogenetic response of in vitro plants

Authors

  • José Bernal Azofeifa Bolaños Universidad Nacional (UNA), Costa Rica
  • German Rivera-Coto Universidad Nacional de Costa Rica, Escuela de Ciencias Agrarias.
  • Amelia Paniagua-Vásquez Universidad Nacional, Instituto de Investigación y Servicios Forestales, Costa Rica
  • Roberto Cordero-Solórzano Universidad Nacional, Escuela de Ciencias Biológicas, Costa Rica
  • Eduardo Salas-Alvarado Universidad Nacional, Escuela de Ciencias Agrarias, Costa Rica

DOI:

https://doi.org/10.15517/am.v30i1.32360

Keywords:

vanillla, plant quality, bacteria desinfection, fungus control

Abstract

Introduction. The aseptic establishment in laboratory conditions of wild type Vanilla planifolia has not been documented in any sterilization and regeneration protocols, nor has been evaluated the importance of disinfection to enhance the plant vigor. Objective. The aim of this experiment was to evaluate the effect of a double disinfection process (greenhouse and laboratory) on the morphogenetic response of nodal segments of vanilla during the establishment and in vitro multiplication. Materials and methods. Laboratory experiments were conducted during 2015 and 2016 at “Instituto de Investigación y Servicios Forestales (INISEFOR) de la Universidad Nacional (UNA)”, Heredia, Costa Rica. The culture medium used was Murashige and Skoog (MS). Six treatments were evaluated: 1) alcohol 70%/NaClO 0.35%; 2) kilol/NaClO 0.35%; 3) control/NaClO 0.35%; 4) alcohol 70%/HgCl2 0.2%; 5) kilol/ HgCl2 0.2% and 6) control/HgCl2 0.2%. Growth variables evaluated were: percentage of total, bacterial and fungal contamination; length, weight, and diameter of the shoot; number, length and weight of the roots. Results. The main genera of bacteria and fungi were Pantoea sp. (33%) and Fusarium sp. (12%). The best disinfection treatment was obtained with the use of kilol in the nursery and HgCl2 in the laboratory, where 100% pathogen-free explants were obtained. For this treatment, a significant increase of length and weight of the shoot, number and weight of the roots were achieved during the establishment. In the multiplication stage, the experimental groups in the aseptic condition showed significant higher values for the variables length and weight compared to the morphogenic response obtained for the green and vigourous in vitro plants in the condition of contamination. Conclusion. The disinfection treatments sequence represents the base line to the optimization of in vitro culture protocols of wild type relatives of V. planifolia, this constitutes a contribution for the ex situ conservation of unique materials and increases promising genetic material.

Downloads

Download data is not yet available.

Author Biographies

German Rivera-Coto, Universidad Nacional de Costa Rica, Escuela de Ciencias Agrarias.

Laboratorio de Fitopatología, Catedrático

Amelia Paniagua-Vásquez, Universidad Nacional, Instituto de Investigación y Servicios Forestales, Costa Rica

Departamento de Agroforestería, Extensionista

Roberto Cordero-Solórzano, Universidad Nacional, Escuela de Ciencias Biológicas, Costa Rica

Laboratorio de Ecología Funcional y Ecosistemas Tropicales, Investigador

References

Abebe, Z., A. Mengesha, A. Teressa, and W. Tefera. 2009. Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. African J. Biotechnol. 8:6817-6821.

Anuradha, K., B.N. Shyamala, and M.M. Naidu. 2013. Vanilla- Its science of cultivation, curing, chemistry, and nutraceutical properties. Crit. Rev. Food Sci. Nutr. 53:1250-1276. doi:10.1080/10408398.2011.563879

Araya, C., R. Cordero, A. Paniagua, y J.B. Azofeifa (eds). 2014. I Seminario Internacional de Vainilla: Promoviendo la investigación, la extensión y la producción de vainilla en Mesoamérica. INISEFOR/UNA, Heredia, CRC.

Azofeifa, J.B. 2018. Respuestas morfogenéticas de plántulas in vitro y esquejes de Vanilla planifolia Andrews provenientes de poblaciones silvestres, caracterizadas molecularmente y cultivadas en invernadero y en sistemas agroforestales, Guápiles, Costa Rica. Tesis MSc., Universidad Estatal a Distancia, San José, CRC.

Azofeifa-Bolaños, J., L.R. Gigant, M. Nicolás-García, M. Pignal, F.B. Tavares-González, E. Hágsater, G.A. Salazar-Chávez, D. Reyes-López, F.L. Archila-Morales, J.A. García-García, D. da-Silva, A. Allibert, F. Solano-Campos, G.C. Rodríguez-Jimenes, A. Paniagua-Vásquez, P. Besse, A. Pérez-Silva, and M. Grisoni. 2017. A new vanilla species from Costa Rica closely related to V. planifolia (Orchidaceae). Eur. J. Taxon. 284:1-26. doi:10.5852/ejt.2017.284

Azofeifa-Bolaños, J.B., A. Paniagua-Vásquez, y J.A. García-García. 2014. Importancia y desafíos de la conservación de Vanilla spp. (Orchidaceae) en Costa Rica. Agron. Mesoam. 25:189-202. doi:10.15517/am.v25i1.14220

Bartholomew, J., and T. Mittwer. 1952. The gram stain. Bacteriol. Rev. 16:1-29.

Divakaran, M., and K.N. Babu. 2009. Micropropagation and in vitro conservation of vanilla (Vanilla planifolia Andrews). In: S.M. Jain, and P.K. Saxena, editors, Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Methods in molecular biology. Humana Press, Totowa, NJ, USA. p. 129-138.

FAO. 1997. Convención Internacional de Protección Fitosanitaria. FAO, Roma, ITA.

Fegan, M. 2006. Plant pathogenic members of the genera Acidovorax and Herbaspirillum. In: S.S. Gnanamanickam, editor, Plant-Associated bacteria. Springer, Dordrecht, HOL. p. 671-702. doi:10.1007/978-1-4020-4538-7_18

Gangadara, N.B., M. Saifulla, R. Nagaraja, and M.K. Basavaraja. 2010. Biological control of Fusarium oxysporum f.sp.

vanillae, the causal agent of stem rot of vanilla in vitro. Int. J. Sci. Nat. 1:259-261.

Geetha, S., and S.A. Shetty. 2000. In vitro propagation of Vanilla planifolia, a tropical orchid. Curr. Sci. 79:886-889.

George, E., M. Hall, and G.J. De-Klerk. (eds.). 2008. Plant propagation by tissue culture. Vol. 1. The Background. 3rd ed. Springer, HOL.

Gigant, R., S. Bory, M. Grisoni, and P. Besse. 2011. Biodiversity and evolution in the Vanilla genus. In: O. Grillo, and G. Venora, editors, Dynamical processes of biodiversity: Case studies of evolution and spatial distribution. InTech, Rijeka, CRO. p. 1-27.

Giridhar, P., B. Obul-Reddy, and G.A. Ravishankar. 2001. Silver nitrate influences in vitro shoot multiplication and root formation in Vanilla planifolia Andr. Curr. Sci. 81:1166-1170.

Giridhar, P., D.V. Ramu, and G.A. Ravishankar. 2003. Phenyl acetic acid-induced in vitro shoot multiplication of Vanilla planifolia. Trop. Sci. 43:92-95. doi:10.1002/ts.96

Giridhar, P., and G.A. Ravishankar. 2004. Efficient micropropagation of Vanilla planifolia Andr. under influence of thidiazuron, zeatin and coconut milk. Indian J. Biotechnol. 3:113-118.

Havkin-Frenkel, D., and F.C. Belanger. 2007. Application of metabolic engineering to vanillin biosynthetic pathways in Vanilla planifolia. In: R. Verpoorte et al., editors, Applications of plant metabolic engineering. Springer, HOL. p. 175-196.

Janarthanam, B., and S. Seshadri. 2008. Plantlet regeneration from leaf derived callus of Vanilla planifolia Andr. In Vitro Cell. Dev. Biol. Plant 44:84-89. doi:0.1007/s11627-008-9123-4

Kado, C.I. 2006. Erwinia and related genera. In: M. Dworkin et al., editors, The prokaryotes. Springer, NY, USA. p. 443-450.

Kalimuthu, K., R. Senthilkumar, and N. Murugalatha. 2006. Regeneration and mass multiplication of Vanilla planifolia Andr. – a tropical orchid. Curr. Sci. 91:1401-1403.

Khoyratty, S., J. Dupont, S. Lacoste, T.L. Palama, Y.H. Choi, H.K. Kim, B. Payet, M. Grisoni, M. Fouillaud, R. Verpoorte, and H. Kodja. 2015. Fungal endophytes of Vanilla planifolia across Réunion Island: isolation, distribution and biotransformation. BMC Plant Biol. 15:142. doi:10.1186/s12870-015-0522-5

Koyyappurath, S., T. Atuahiva, R. Le-Guen, H. Batina, S. Le-Squin, N. Gautheron, V. Edel-Hermann, J. Peribe, M. Jahiel, C. Steinberg, E.C.Y. Liew, C. Alabouvette, P. Besse, M. Dron, I. Sache, V. Laval, and M. Grisoni. 2016. Fusarium oxysporum f. sp. radicis-vanillae is the causal agent of root and stem rot of vanilla. Plant Pathol. 65:612-625. doi:10.1111/ppa.12445

Luna-Guevara, J.J., H. Ruiz-Espinosa, E.B. Herrera-Cabrera, A. Navarro-Ocaña, A. Delgado-Alvarado, y M.L. Luna-Guevara. 2016. Variedad de microflora presente en vainilla (Vanilla planifolia Jacks. ex Andrews) relacionados con procesos de beneficiado. Agroproductividad 9(1):3-9.

Maruenda, H., M.D.L. Vico, J.E. Householder, J.P. Janovec, C. Cañari, A. Naka, and A.E. González. 2013. Exploration of

Vanilla pompona from the Peruvian Amazon as a potential source of vanilla essence: Quantification of phenolics by

HPLC-DAD. Food Chem. 138:161-167. doi:10.1016/j.foodchem.2012.10.037

Mng’omba, S.A., E.S. du-Toit, F.K. Akinnifesi, and H.M. Venter. 2007. Effective preconditioning methods for in vitro

propagation of Uapaca kirkiana Müell Arg. tree species. African J. Biotechnol. 6:1670-1676.

Mng’omba, S.A., G. Sileshi, E.S. du-Toit, and F.K. Akinnifesi. 2012. Efficacy and Utilization of fungicides and other antibiotics for aseptic plant cultures. In: D. Dhanasekaran et al., editors, Fungicides for plant and animal diseases. InTech, Rijeka, CRO. p. 245-254.

Mujar, E.K., N.J. Sidik, N.A. Sulong, S.S. Jaapar, and M.H. Othman. 2014. Effect of low gamma radiation and methyl jasmonate on Vanilla planifolia tissue culture. Int. J. Pharm. Sci. Rev. Res. 27:163-167.

Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15:473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

Ordóñez, N.F., J.T. Otero, y M.C. Díez. 2012. Hongos endófitos de orquídeas y su efecto sobre el crecimiento en Vanilla planifolia Andrews. Acta Agron. 61:282-290.

Pierik, R.L.M. 1997. In vitro culture of higher plants. Springer, HOL.

Pinaria, A.G., E.C.Y. Liew, and L.W. Burgess. 2010. Fusarium species associated with vanilla stem rot in Indonesia. Australas. Plant Pathol. 39:176183. doi:10.1071/AP09079

Radjacommare, R., S. Venkatesan, and R. Samiyappan. 2010. Biological control of phytopathogenic fungi of vanilla

through lytic action of Trichoderma species and Pseudomonas fluorescens. Arch. Phytopathol. Plant Prot. 43:1-17. doi:10.1080/03235400701650494

Ranadive, A. 2011. Quality control of vanilla beans and extracts. In: D. Havkin-Frenkel, and F. Belanger, editors, Handbook of vanilla science and technology. Wiley-Blackwell, Hoboken, NJ, USA. p. 141-161.

Reina-Pinto, J.J., and A. Yephremov. 2009. Surface lipids and plant defenses. Plant Physiol. Biochem. 47:540-549. doi:10.1016/j.plaphy.2009.01.004

Renuga, G., and S.N. Saravana-Kumar. 2014. Induction of vanillin related compounds from nodal explants of Vanilla planifolia using BAP and Kinetin. Asian J. Plant Sci. Res. 4(1):53-61.

Rivera-Coto, G., y G. Corrales-Moreira. 2007. Problemas fitosanitarios que amenazan la conservación de las orquídeas en Costa Rica. Lankesteriana 7:347-352. doi:10.15517/lank.v7i1-2.19562

Roux-Cuvelier, M., and M. Grisoni. 2010. Conservation and movement of vanilla germplasm. In: E. Odoux, and M. Grisoni, editors, Vanilla. CRC Press, Boca Raton, FL, USA. p. 31-41.

Santa-Cardona, C., M. Marín-Montoya, y M.C. Díez. 2012. Identificación del agente causal de la pudrición basal del tallo de vainilla en cultivos bajo cobertizos en Colombia. Rev. Mex. Mic. 35:23-34.

Schaad, N.W, J.B. Jones, and W. Chun. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS Press, St. Paul, MN, USA.

Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9:671-675. doi:10.1038/nmeth.2089

Soto-Arenas, M.A., y A.R. Solano-Gómez. 2007. Vanilla planifolia. En: M.A. Soto-Arenas, editor, Fichas de especies del

proyecto W029: Información actualizada dobre especies de orquídeas del PROY-NOM-059-ECOL- 2000. Instituto Chinoin A.C., Herbario de la Asociación Mexicana de Orquideología A.C. Bases de datos SNIB-CONABIO, México, D. F., MEX. p. 1-18. http://www.conabio.gob.mx/institucion/proyectos/resultados/W029_Fichas%20de%20especies.pdf

(consultado feb. 2018)

Tafolla-Arellano, J.C., A. González-León, M.E. Tiznado-Hernández, L.Z. García, y R. Báez-Sañudo. 2013. Composición, fisiología y biosíntesis de la cutícula en Plantas. Rev. Fitotec. Mex. 36:3-12.

Tan, B.C., C.F. Chin, and P. Alderson. 2011a. Optimisation of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Andrews. Plant Cell, Tiss. Organ Cult. 105:457-463. doi:10.1007/s11240-010-9866-6

Tan, B.C., C.F. Chin, and P. Alderson. 2011b. An improved plant regeneration of Vanilla planifolia Andrews. Plant Tiss. Cult. Biotechnol. 21:27-33. doi:10.3329/ptcb.v21i1.9560

Trigiano, R.N., and D.J. Gray. 2004. Plant development and biotechnology. CRC Press, Boca Raton, FL, USA.

Walterson, A.M., and J. Stavrinides. 2015. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39:968-984. doi:10.1093/femsre/fuv027

Zuraida, A.R., K.H.F. Liyana, O.A. Nazreena, W.S. Wan-Zaliha, C.M.Z. Che-Radziah, Z. Zamri, and S. Sreeramanan. 2013. A Simple and Efficient Protocol for the Mass Propagation of Vanilla planifolia. Am. J. Plant Sci. 4:1685-1692. doi:10.4236/ajps.2013.49205

Published

2019-01-01

How to Cite

Azofeifa Bolaños, J. B., Rivera-Coto, G., Paniagua-Vásquez, A., Cordero-Solórzano, R., & Salas-Alvarado, E. (2019). Disinfection effect of nodal segments from Vanilla planifolia Andrews on the morphogenetic response of in vitro plants. Agronomía Mesoamericana, 30(1), 33–49. https://doi.org/10.15517/am.v30i1.32360