Chlorogenic acids present in coffee: antioxidant and antimicrobial capacity
DOI:
https://doi.org/10.15517/am.v30i1.32974Keywords:
allomones, bactericides, waste, secondary metabolite, phytochemicalsAbstract
Introduction. Chlorogenic acids are present in the different parts of the coffee fruit; they are mainly esters of trans-cinamic acid possessing antioxidant activity, hypoglycemic, antiviral, hepatoprotective and nutraceutical, among others. Objective. The objective of this study was to analyze and summarize the information available in the scientific literature concerning the antioxidant and antimicrobial activity present in coffee and its derived processing by-products. Development. Derived products of coffee processing (pulp, mucilage, parchment, “silver skin”), are in many occasions underutilized, even though they possess significant quantities of chlorogenic acids. These by-products are then considered promissory sources of chlorogenic acids which may be useful for pharmaceutical, cosmetic and food industries. These products exhibit important antioxidant and antimicrobial activity especially against Gram positive microorganisms. In Costa Rica, the research focused on the exploitation of the discarded by-products of coffee processing is still incipient, although it could be a suitable alternative for coffee processing industries to give added value to these by-products. Conclusion. There is scientific evidence that indicates that both, the coffee beans and its derived processing by-products have phenolic compound that benefit human health.
Downloads
References
Almeida, A.A., A. Farah, D.A. Silva, E.A. Nunan, and M.B. Gloria. 2006. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric. Food Chem. 54:8738-8743. doi:10.1021/jf0617317
Almeida, A.A.P., C.C. Naghetini, V.R. Santos, A.G. Antonio, A. Farah, and M.B.A. Glória. 2012. Influence of natural coffee compounds, coffee extracts and increased levels of caffeine on the inhibition of Streptococcus mutans. Food Res. Int. 49:459-461. doi:10.1016/j.foodres.2012.07.026
Alton, M. 1998. The chemical components of coffee, In: G.A. Spiller, editor, Caffeine. CRC Press, FL, USA. p. 97-162.
Antonio, A.G., N.L. Iorio, V.S. Pierro, M.S. Candreva, A. Farah, A., K.R. dos-Santos, and L.A. Maia. 2011. Inhibitory properties of Coffea canephora extract against oral bacteria and its effect on demineralisation of deciduous teeth. Arch. Oral Biol. 56:556-567. doi:10.1016/j.archoralbio.2010.12.001
Barbieri, R., E. Coppo, A. Marchese, M. Daglia, E. Sobarzo-Sánchez, S.F. Nabavi, and S.M. Nabavi. 2017. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 196:44-68. doi:10.1016/j.micres.2016.12.003
Belitz, H.-D., W. Grosch, and P. Schieberle. 2009. Alcoholic beverages. In: H.-D. Belitz et al., editors, Food chemistry. 4th ed. Springer-Verlag, Berlin, GER. p. 892-969.
Bresciani L., L. Calani, R. Bruni, F. Brighenti, and D. Del-Río. 2014. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res. Int. 61:196-201. doi:10.1016/j.foodres.2013.10.047
Brigitta, E., T. Bencsik, and N. Papp. 2016. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac. J. Trop. Med. 9:1127-1135. doi:10.1016/j.apjtm.2016.11.008
Budryn, G., E. Nebesny, B. Pałecz, D. Rachwał-Rosiak, P. Hodurek, K. Miśkiewicz, J. Oracz, and D. Żyżelewicz. 2014. Inclusion complexes of β-cyclodextrin with chlorogenic acids (CHAs) from crude and purified aqueous extracts of green Robusta coffee beans (Coffea canephora L.). Food Res. Int. 61:202-213. doi:10.1016/j.foodres.2013.10.013
Butt, M.S., and M.T. Sultan. 2011. Coffee and its consumption: benefits and risks. Crit. Rev. Food Sci. Nutr. 51:363-373. doi:10.1080/10408390903586412
Campos-Vega, R., G. Loarca-Piña, H. Vergara-Castañeda, and B.D. Oomah. 2015. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 45:24-36. doi:10.1016/j.tifs.2015.04.012
Cho, A.R., K.W. Park, K.M. Kim, S.Y. Kim, and J. Han. 2013. Influence of roasting conditions on the antioxidant characteristics of Colombian coffee (Coffea arabica L.) beans. J. Food Biochem. 38:271-280. doi:10.1111/jfbc.12045
Cohen D., A. Goncalves, A. Farah, and L. Cople. 2015. Coffea canephora: A promising natural anticariogenic product. In: V. Preedy, editor, Coffee in health and disease prevention. Elsevier Inc., NY, USA. p. 615-625. doi:10.1016/B978-0-12-409517-5.00069-3
Crozier, A., I.B. Jaganath, and M.N. Clifford. 2009. Dietary phenolics: chemistry, biavailability and effects on health. Nat. Prod. Rep. 26:1001-1043. doi:10.1039/b802662a
Daglia, M., A. Papetti, C. Gregotti, F. Berté, and G. Gazzani. 2000. In vitro antioxidant and ex vivo protective activities of green and roasted coffee. J. Agric. Food Chem. 48:1449-1454. doi:10.1021/jf990510g
Daglia, M., A. Papetti, P. Grisoli, C. Aceti, V. Spini, C. Dacarro, and G. Gazzani. 2007. Isolation, identification, and quantification of roasted coffee antibacterial compounds. J. Agric. Food Chem. 55:10208-10213. doi:10.1021/jf0722607
Daglia, M., R. Tarsi, A. Papetti, P. Grisoli, C. Dacarro, C. Pruzzo, and C. Gazzani. 2002. Antiadhesive effect of green and roasted coffee on Streptococcus mutans adhesive properties on saliva-coated hydroxyapatite beads. J. Agric. Food Chem. 50:1225-1229. doi:10.1021/jf0958t
Delgado-Andrade, C., J.A. Rufián-Henares, and F.J. Morales. 2005. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem. 53:7832-7836. doi:10.1021/jf0512353
Duangjai, A., N. Suphrom, J. Wungrath, A. Ontawong, N. Nuengchamnong, and A. Yosboonruang. 2016. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integr. Med. Res. 5:324-331. doi:10.1016/j.imr.2016.09.001
Echeverría, M., and M. Nuti. 2017. Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Waste Manag. J. 10:13-22.
Esquivel, P., and V. Jiménez. 2012. Functional properties of coffee and coffee by-products. Food Res. Int. 46:488-495. doi:10.1016/j.foodres.2011.05.028
Fujioka, K., and T. Shibamoto. 2008. Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem. 106:217-221. doi:10.1016/j.foodchem.2007.05.091
Gazzani, G., M. Dalia, and A. Papetti. 2012. Food components with anticaries activity. Curr. Opin. Biotechnol. 23:153-159. doi:10.1016/j.copbio.2011.09.003
Guil-Guerrero, J.L., L. Ramos, C. Moreno, J.C. Zuñiga-Paredes, M. Carlosama-Yepez, and P. Ruales. 2016. Antimicrobial activity of plant-food-by-products: A review focusing on the tropics. Livest. Sci.189:32-49. doi:10.1016/j.livsci.2016.04.021
Gutiérrez, A. 2002. Café antioxidantes y protección a la salud. MEDISAN 6(4):72-81.
Gyawali, R., and S.A. Ibrahim. 2014. Natural products as antimicrobial agents. Food Control 46:412-429. doi:10.1016/j.foodcont.2014.05.047
Gyawali, R., and S.A. Ibrahim. 2012. Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Appl. Microbiol. Biotechnol. 95:29-45. doi:10.1007/s00253-012-4117-x
Hakeem, I., S. Gencer, M.S. Ullrich, and N. Kuhnert. 2018. Tea and coffee time with bacteria - Investigation of uptake of key coffee and tea phenolics by wild type E. coli. Food Res. Int. 108:584-594. doi:10.1016/j.foodres.2018.03.023
Hakeem, I., R.R.L. Sha, M.S. Ullrich, and N. Kuhnert. 2016. Quantification of microbial uptake of quercetin and its derivatives using an UHPLC-ESI-QTOF mass spectrometry assay. Food Funct.7:4082-4091. doi:10.1039/c6fo00652c
Hakkou, Z., A. Maciuk, V. Lablais, N.E. Bouanani, H. Mekhfi, M. Bnouham, M. Aziz, A. Ziyyat, A. Rauf, T.B. Hadda, U. Shaheen, S. Patel, R. Fischmeister, and A. Leggssyer. 2017. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 93:62-69. doi:10.1016/j.biopha.2017.06.015
International Coffee Organization. 2016. Coffee market consolidates price rises but Robusta supply still a concern. Coffee market report. International Coffee Organization Blog. https://icocoffeeorg.tumblr.com/post/148833167985/coffee-market-consolidates-price-rises-but-robusta (accessed Sep. 5, 2018).
Iriondo-Dehond, A., N. Aparicio-García, B. Fernández-Gómez, E. Guisantes-Batan, F. Velásquez-Escobar, G.P. Blanch, M.I. San-Andrés, S. Sánchez-Fortun, and M.D. Del-Castillo. 2018. Validation of coffee by-products as novel food ingredients. Inn. Food Sci. Emerg. Technol. doi:10.1016/j.ifset.2018.06.010
Ito, R., A. Yamamoto, S. Kodama, K. Kato, Y. Yoshimura, A. Matsunaga, and H. Nakazawa. 2003. A study on the change of enantiomeric purity of catechins in green tea infusion. Food Chem. 83:563-568. doi:10.1016/S0308-8146(03)00154-7
Janissen, B., and T. Huynh. 2018. Chemical composition and value-adding applications of coffee industry byproducts: A review. Resour. Conserv. Recyc. 128:110-117. doi:10.1016/j.resconrec.2017.10.001
Jiménez-Zamora, A., S. Pastoriza, and J. Rufián-Henares. 2015. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT - Food Sci. Technol. 61:12-18. doi:10.1016/j.lwt.2014.11.031
Kim, J.-H., D.U. Ahn, J.B. Eun, and S.H. Moon. 2016. Antioxidant effect of extracts from the coffee residue in raw and cooked meat. Antioxidants 5(3):E21. doi:10.3390/antiox5030021
Kim, J.-H., S. Lee, J. Shim, H.W. Kim, J. Kim, Y.J. Jang, H. Yang, J. Park, S.H. Choi, J.H. Yoon, K.W. Lee, and H.J. Lee. 2012. Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochem. Int. 60:466-474. doi:10.1016/j.neuint.2012.02.004
Kovalcik, A., S. Obruca, and I. Marova. 2018. Valorization of spent coffee grounds: A review. Food Bioprod. Proces. 110:104-119. doi:10.1016/j.fbp.2018.05.002
Lima, V.N., C.D. Olivera, E.S. Santos, L.P. Morais, S.R. Tintino, T.S. Freitas, Y.S. Geraldo, R.L. Pereira, R.P. Cruz, I.R. Menezes, and H.D. Coutinho. 2016. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 99:56-61. doi:10.1016/j.micpath.2016.08.004
Ludwig, I.A., M.P. de-Peña, C. Cid, and A. Crozier. 2013. Catabolism of coffee chlorogenic acids by human colonic microbiota. Biofactors 39:623-632. doi:10.1002/biof.1124
Lou, Z., H. Wang, S. Zhu, C. Ma, and Z. Wang. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 76:M398-M403. doi:10.1111/j.1750-3841.2011.02213.x
Ma, C.M., T. Kawahata, M. Hattori, T. Otake, L. Wang, and M. Daneshtalab. 2010. Synthesis, anti-HIV and anti-oxidant activities of caffeoyl 5, 6-anhydroquinic acid derivatives. Bioorg. Med. Chem. 18:863-869. doi:10.1016/j.bmc.2009.11.043
Machado, E., R. Rodríguez-Jasso, J. Texeira, and S. Mussatto. 2012. Growth of fungal strains on coffee industry residues with removal of polyphenolic compounds. Biochem. Eng. J. 60:87-90. doi:10.1016/j.bej.2011.10.007
Martínez-Tomé, M., A. Jiménez-Monreal, L. García-Jiménez, L. Almela, I. García-Diz, M. Mariscal-Arcas, and M.A. Murcia. 2011. Assessment of antimicrobial activity of coffee brewed in three different ways from different origins. Eur. Food Res. Technol. 233:497-505. doi:10.1007/s00217-011-1539-0
Martini, D., C. Del-Bo, M. Tassotti, P. Riso, D. Del-Rio, F. Brighenti, and M. Porrini. 2016. Coffee consumption and oxidative stress: a review of human intervention studies. Molecules 21(8):E979. doi:10.3390/molecules21080979
McCarthy, R., and F. O’Gara. 2015. The impact of phytochemicals present in the diet on microbial signalling in the human gut. J. Funct. Foods 14:684-691. doi:10.1016/j.jff.2015.02.032
Meckelburg, N., K.C. Pinto, A. Farah, N.L. Iorio, V.S. Pierro, K.R. dos-Santos, L.C. Maia, and A. Antonio. 2014. Antibacterial effect of coffee: calcium concentration in a culture containing teeth/biofilm exposed to Coffea canephora aqueous extract. Lett. Appl. Microbiol. 59:342-347. doi:10.1111/lam.12281
Medina, I., I. Undeland, K. Larsson, I. Storrø, T. Rustad, C. Jacobsen, V. Kristinová, and J.M. Gallardo. 2012. Activity of caffeic acid in different fish lipid matrices: A review. Food Chem. 131:730-740. doi:10.1016/j.foodchem.2011.09.032
Mills, C.E., M.J. Oruna-Concha, D.S. Mottram, G.R. Gibson, and J.P.E. Spencer. 2013. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem. 141:3335-3340. doi:10.1016/j.foodchem.2013.06.014
Monente, C., J. Bravo, A.I. Vitas, L. Arbillaga, M.P. de-Peña, and C. Cid. 2015. Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. J. Funct. Foods 12:365-374. doi:10.1016/j.jff.2014.12.006
Monteiro, M.C., and A. Farah. 2012. Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops. Food Chem. 134:611-614. doi:10.1016/j.foodchem.2012.02.118
Murthy, P.S., and M.M. Naidu. 2012 Sustainable management of coffee industry by-products and value addition-A review. Resour. Conserv. Recyc. 66:45-58. doi:10.1016/j.resconrec.2012.06.005
Naidu, M.M., G. Sulochanamma, S.R. Sampathu, S., and P. Srinivas. 2008. Studies on extraction and antioxidant potential of green coffee. Food Chem. 107:377-384. doi:10.1016/j.foodchem.2007.08.056
Nakayama, T., and K. Oishi. 2013. Influence of coffee (Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS Microbiol. Lett. 343:161-168. doi:10.1111/1574-6968.12142
Naranjo, M., L.T. Velez, y B.A. Rojano. 2011. Actividad antioxidante de café colombiano de diferentes calidades. Rev. Cub. Plant. Med. 16:164-173.
Natella, F., and C. Scaccini. 2012. Role of coffee in modulation of diabetes risk. Nutr. Rev. 70:207-217. doi:10.1111/j.1753-4887.2012.00470.x
Naveed, M., V. Hejazi, M. Abbas, A. Kamboh, G.J. Khan, M. Shumzaid, F. Ahmas, D. Babazadeh, X. Fang, F. Modarresi-Ghazani, L. WenHua, and Z. XiaoHui. 2018. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 97:67-74. doi:10.1016/j.biopha.2017.10.064
Nkondjock, A. 2009. Coffee consumption and the risk of cancer: An overview. Cancer Lett. 277:121-125. doi:10.1016/j.canlet.2008.08.022
Peshev, D., D. Mitev, L. Peeva, and G. Peev. 2018. Valorization of spent coffee grounds - A new approach. Separat. Purificat. Technol. 192:271-277. doi:10.1016/j.seppur.2017.10.021
Pisoschi, A.M., A. Pop, C. Georgescu, V. Turcus, N.K. Olah, and E. Mathe. 2018. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 143: 922-935. doi:10.1016/j.ejmech.2017.11.095
Pontes, P.V., R.F.A. Moreira, L.C. Trugo, and C.A.B. De-Maria. 2002. The content of chlorogenic acids in tropical fruits. J. Sci. Food Agric. 82:1177-1181. doi:10.1002/jsfa.1163
Ramalakshmi, K., L. Rao, Y. Takano-Ishikawa, and M. Goto. 2009. Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chem. 115:79-85. doi:10.1016/j.foodchem.2008.11.063
Ramírez-Martínez, J.R. 1988. Phenolic compounds in coffee pulp: Quantitative determination by HPLC. J. Sci. Food Agric. 43:135-144. doi:10.1002/jsfa.2740430204
Rufián-Henares, J.A., and S.P. de-la-Cueva. 2009. Antimicrobial activity of coffee melanoidins-A study of their metal-Chelating properties. J. Agric. Food Chem. 57:432-438. doi:10.1021/jf8027842
Rufián-Henares, J.A., and F.J. Morales. 2008. Antimicrobial activity of melanoidins against Escherichia coli ismediated by a membrane-damage mechanism. J. Agric. Food Chem. 56:2357-2362. doi:10.1021/jf073300+
Runti, G., S. Pacor, S. Colomban, R. Gennaro, L. Navarin, and M. Scocchi. 2015. Arabica coffee extract shows antibacterial activity against Staphylococcus epidermidis and Enterococcus faecalis and low toxicity towards a human cell line. LWT - Food Sci. Technol. 62:108-114. doi:10.1016/j.lwt.2014.12.039
Siqueira-Palmeri, M.G., L.T. Cruz, F. Soares-Bertges, H. Moreira-Húngaro, L.R. Batista, S.S. Da-Silva, M.J. Vieira-Fonseca, M. Pereira-Rodarte, F M. Pinto-Vilela, and M. Da-Penha. 2018. Enhancement of antioxidant properties from green coffee as promising ingredient for food and cosmetic industries. Biocatal. Agric. Biotechnol. 16:43-48. doi:10.1016/j.bcab.2018.07.011
Somporn, C., A. Kamtuo, P. Theerakulpisut, and S. Siriamornpun. 2011. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea arabica L. cv. Catimor) harvested from north-eastern Thailand. J. Sci. Food Agric. 92:1956-1963. doi:10.1002/jsfa.5568
Stalikas, C.D. 2007. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 30:3268-3295. doi:10.1002/jssc.200700261
Suárez-Quiroz, M.L., A. Campos, V. Alfaro, O. González-Ríos, P. Villeneuve, and M.C. Figueroa-Espinoza. 2013a. Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters. Microb. Pathog. 61-62:51-56. doi:10.1016/j.micpath.2013.05.005
Suárez-Quiroz, M.L., W. Taillefer, E.M. López-Méndez, O. González-Ríos, P. Villenueve, and M.C. Figuero-Espinoza. 2013b. Antibacterial activity and antifungal and anti-mycotoxigenic activities against Aspergillus flavus and A. ochraceus of green coffee chlorogenic acids and dodecyl chlorogenates. J. Food Safety 33:360-368. doi:10.1111/jfs.12060
Tfouni, S.A.V., L.B. Carreiro, C.R.A. Teles, R.P.Z. Furlani, K.M.V.A.B. Cipolli, and M.C.R. Camargo. 2013. Caffeine and chlorogenic acids intake from coffee brew: influence of roasting degree and brewing procedure. Int. J. Food Sci. Technol. 49:747-752. doi:10.1111/ijfs.12361
Wang, G.F., L.P. Shi, Y.D. Ren, Q.F. Liu, H.F. Liu, R.J. Zhang, Z. Li, F.H. Zhu, P.L. He, W. Tang, P.Z. Tao, C. Li, W.M. Zhao, and J.P. Zuo. 2009. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 83:186-190. doi:10.1016/j.antiviral.2009.05.002
Zuo J., W. Tang, and Y. Xu. 2015. Anti-Hepatitis B virus activity of chlorogenic acid and its related compounds in coffee in health and disease prevention. In: V. Preedy, editor, Coffee in health and disease prevention. Elsevier Inc., NY, USA. p. 607-613. doi:10.1016/B978-0-12-409517-5.00068-1
Downloads
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).