Bud rot evaluation in oil palm (Elaeis guineensis Jacq.) using multispectral imaging, Costa Rica
DOI:
https://doi.org/10.15517/am.v33i2.47557Keywords:
remote sensing, vegetation index, simple ratio indexAbstract
Introduction. The use of remote sensing to identify the different plant health conditions, and its relationship with crop yield, constitutes a very important tool in the implementation of Precision Agriculture. Objective. To relate the phytosanitary status, obtained by experts through visual assessment, of oil palm (Elaeis guineensis Jacq.) plants affected by bud rot (BR), with the vegetation indices calculated with multispectral images obtained with an unmanned aerial vehicle (UAV). Materials and methods. The study was conducted in a four-hectare plantation with oil palm three-year-old, owned by CoopeCalifornia R.L., located in Parrita, Costa Rica. Four visual assessments of the BR state were conducted from December 2014 to February 2017. With these assessments, the spatial-temporal evaluation of the incidence of BR during 26 months was obtained. In the last evaluation, a flight was performed with a UAV carrying a Parrot Sequoia multispectral camera, with which vegetation indexes were calculated and then related to the BR status of the oil palm plants. Results. A high spatial and temporal variability of BR was found during all visual evaluations performed. A strong relationship was also found between data from field assessments and data generated from remote sensing. The Simple Ratio (SR) vegetation index showed significant differences between plants classified as healthy and plants classified with BR, with degrees 2 and 3 of severity. Conclusions. Field data, obtained through expert judgment, can be linked to high spatial resolution multispectral information to identify BR in commercial oil palm plantations.
Downloads
References
Acosta, A., & Munévar, F. (2003). Bud rot in oil palm plantations: link to soil physical properties and nutrient status. Better Crops International, 17(2), 22–25.
Arnal Barbedo, J. G. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), Article 40. https://doi.org/10.3390/drones3020040
Birth, G. S., & McVey, G. R. (1968). Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60(6), 640–643. https://doi.org/10.2134/agronj1968.00021962006000060016x
Calera, A., Campos, I., Osann, A., D’Urso, G., & Menenti, M. (2017). Remote sensing for crop water management: From ET modelling to services for the end users. Sensors, 17(5), Article 1104. https://doi.org/10.3390/s17051104
Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing (5th Ed.). Guilford Press.
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., & Grégoire, J. M. (2001). Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 77(1), 22–33. https://doi.org/10.1016/S0034-4257(01)00191-2
Chinchilla, C. M. (2008). Las muchas caras de las pudriciones del cogollo (y de flechas) en palma aceitera y la importancia de un enfoque integral para su manejo. ASD Oil Palm Papers, 32, 11–23. https://bit.ly/3IaSUCx
Chuvieco, E. (2008). Teledetección ambiental (3a ed.). Ariel Ciencia.
Environmental Systems Research Institute. (2021). Cómo funciona Autocorrelación espacial (I de Moran global). ArcGIS. https://bit.ly/350f63Z
Exelis Visual Information Solutions, Inc. (2016). Broadband Greenness. L3HARRIS. https://bit.ly/3LP8czl
Fernández-Arango, D., Martín-Isabel, P., Vilar del Hoyo, L., & Pacheco-Labrador, J. (2015). Estimación del contenido de humedad de la vegetación a partir de imágenes hiperespectrales adquiridas por el sensor aeroportado CASI (Compact Airborne Spectrographic Imager). Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 16, 177–204. http://www.geofocus.org/index.php/geofocus/article/view/399
Ferguson, R., & Rundquist, D. (2018). Remote sensing for site-specific crop management. In D. K. Shannon, D. E. Clay, & N. R. Kitchen (Eds.), Precision agriculture basics (pp. 103–117). American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America. https://doi.org/10.2134/precisionagbasics.2016.0092
Gitelson, A. A., & Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. International Journal of Remote Sensing, 18(12), 2691–2697. https://doi.org/10.1080/014311697217558
Gitelson, A. A., Merzlyak, M. N., & Chivkunva, O. B. (2001). Optical properties and nondestructive estimation of anthocyannin content in plant leaves. Photochemistry and Photobiology, 74(1), 38–45. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2
Gogoi, N. K., Deka, B., & Bora, L. C. (2018). Remote sensing and its use in detection and monitoring plant diseases: A review. Agricultural Reviews, 39(4), 307–3013. https://doi.org/10.18805/ag.r-1835
Gröll, K., Graeff, S., & Claupein, W. (2007, März 5-7). Use of vegetation indices to detect plant diseases [Conference presentation Referate der 27]. Agrarinformatik im Spannungsfeld zwischen Regionalisierung und globalen Wertschöpfungsketten, Stuttgart, Germany. https://bit.ly/33JE72Y
Hennessy, A., Clarke, K., & Lewis, M. (2020). Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sensing, 12(1), Article 113. https://doi.org/10.3390/rs12010113
Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
Instituto Meteorologico Nacional del Costa Rica. (2021). Datos climaticos estación de Damas en Aguirre. https://www.imn.ac.cr/mapa
Kaufman, Y. J., & Tanre. D. (1992). Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261–270. https://doi.org/10.1109/36.134076
Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), Article 3783. https://doi.org/10.3390/rs12223783
Liaghat, S., Ehsani, R., Mansor, S., Shafri, H. Z. M., Meon, S., Sankaran, S., & Azam, S. H. M. N. (2014). Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10), 3427–3439. https://doi.org/10.1080/01431161.2014.903353
Lillesand, T. M., Kiefer, R. & Chipman, J. (1987). Remote sensing and image interpretation (2nd ed.). John Wiley & Sons.
Loong Chong, K., Devi Kanniah, K., Pohl, C., & Pang Tan, K. (2017). A review of remote sensing applications for oil palm studies. Geo-Spatial Information Science, 20(2), 184–200. https://doi.org/10.1080/10095020.2017.1337317
Mahlein, A. K. (2016). Present and future trends in plant disease detection. Plant Disease, 100(2), 241–251. https://doi.org/10.1094/PDIS-03-15-0340-FE
Mahlein, A. K., Kuska, M. T., Behmann, J., Polder, G., & Walter, A. (2018). Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annual Review of Phytopathology, 56, 535-558. https://doi.org/10.1146/annurev-phyto-080417-050100
Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019
Martínez-Barbáchano, R., & Solís-Miranda, G. A. (2018). Caracterización espectral y detección de Flecha Seca en palma africana en Puntarenas, Costa Rica. Revista Geográfica de América Central, 61(2), 349-377. https://doi.org/10.15359/rgac.61-2.13
Mata, R., Rosales, A., Sandoval, D., Vindas, E., & Alemán, B. (2020). Subórdenes de suelos de Costa Rica [mapa digital, escala 1:200000]. Universidad de Costa Rica. http://www.cia.ucr.ac.cr/?page_id=139
Petropoulos, G., & Kalaitzidis, C. (2012). Multispectral vegetation index in remote sensing: An overview. In W. Zhang (Ed.), Ecological modeling (pp. 15–34). Nova Science Publishers, Inc.
Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S., & Upchurch, D. R. (2003). Remote sensing for site-specific crop management. Photogrammetric Engineering & Remote Sensing, 69(6), 647–664.
Pix4D SA. (2021). Pix4DMapper®. https://www.pix4d.com/es/acerca-de-pix4d
Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384. https://doi.org/10.1016/0034-4257(94)00114-3
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS (Paper A 20). In S. C. Freden, E. P. Mercanti, & M. A. Becker (Eds.), Third Earth Resources Technology Satellite-1 Symposium. Volume 1: Technical Presentations, section A (pp. 301–317). NASA. https://ntrs.nasa.gov/citations/19740022614
Sachs, J. D., Remans, R., Smukler, S. M., Winowiecki, L., Andelman, S. J., Cassman, K. G., Castle, D., DeFries, R., Denning, G., Fanzo, J., Jackson, L. E., Leemans, R., Lehmann, J., Milder, J. C., Naeem, S., Nziguheba, G., Palm, C. A., Pingali, P. L., Reganold, J. P., … Sanchez, P. A. (2012). Effective monitoring of agriculture: A response. Journal of Environmental Monitoring, 14(3), 738–742. https://doi.org/10.1039/c2em10584e
Santoso, H., Gunawan, T., Jatmiko, R. H., Darmosarkoro, W., & Minasny, B. (2011). Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precision Agriculture, 12(2), 233–248. https://doi.org/10.1007/s11119-010-9172-7
Santoso, H., Tani, H., & Wang, X. (2016). A simple method for detection and counting of oil palm trees using high-resolution multispectral satellite imagery. International Journal of Remote Sensing, 37(21), 5122–5134. https://doi.org/10.1080/01431161.2016.1226527
Shafri, H. Z. M., & Hamdan, N. (2009). Hyperspectral imagery for mapping disease infection in oil palm plantation using vegetation indices and red edge techniques. American Journal of Applied Sciences, 6(6), 1031–1035. https://doi.org/10.3844/ajassp.2009.1031.1035
Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), Article 3136. https://doi.org/10.3390/rs12193136
Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968–977. https://doi.org/10.2134/agronj2005.0200
Tao, H., Feng, H., Xu, L., Miao, M., Long, H., Yue, J., Li, Z., Yang, G., Yang, X., & Fan, L. (2020). Estimation of crop growth parameters using UAV- based hyperspectral remote sensing data. Sensors, 20(5), Article 1296. https://doi.org/10.3390/s20051296
Thenkabail, P., Lyon, J., & Huete, A. (2011). Advances in hyperspectral remote sensing of vegetation and agricultural croplands. In P. Thenkabail, J. Lyon, & A. Huete (Eds.), Hyperspectral remote sensing of vegetation (pp. 3–36). CRC Press.
Ustin, S. L., Roberts, D. A., Gamon, J. A., Asner, G. P., & Green, R. O. (2004). Using imaging spectroscopy to study ecosystem processes and properties. BioScience, 54(6), 523–534. https://doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
Van de Lande, H. L., & Zadoks, J. C. (1999). Spatial patterns of spear rot in oil palm plantations in Surinam. Plant Pathology, 48(2), 189–201. https://doi.org/10.1046/j.1365-3059.1999.00331.x
Viera-Torres, M., Sinde-González, I., Gil-Docampo, M., Bravo-Yandún, V., & Toulkeridis, T. (2020). Generating the baseline in the early detection of bud rot and red ring disease in oil palms by geospatial technologies. Remote Sensing, 12(19), Article 3229. https://doi.org/10.3390/rs12193229
Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, Article 111402. https://doi.org/10.1016/j.rse.2019.111402
Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, Article 104943. https://doi.org/10.1016/j.compag.2019.104943
Zhao, H., Yang, C., Guo, W., Zhang, L., & Zhang, D. (2020). Automatic estimation of crop disease severity levels based on vegetation index normalization. Remote Sensing, 12(12), Article 1930. https://doi.org/10.3390/rs12121930
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).