Evaluación de Flecha Seca en palma aceitera (Elaeis guineensis Jacq.) mediante imágenes multiespectrales, Costa Rica

Autores/as

DOI:

https://doi.org/10.15517/am.v33i2.47557

Palabras clave:

teledetección, índices de vegetación, índice simple ratio

Resumen

Introducción. El uso de la teledetección para identificar los diferentes estados de la salud de los cultivos, así como su relación con el rendimiento, constituye una herramienta muy importante en la implementación de la Agricultura de Precisión. Objetivo. Relacionar el estado fitosanitario, obtenido por expertos mediante la evaluación visual, de plantas de palma de aceite (Elaeis guineensis Jacq.) afectadas por el síndrome de Flecha Seca (SFS), con los índices de vegetación calculados a partir de imágenes multiespectrales obtenidas con un vehículo aéreo no tripulado (VANT). Materiales y métodos. El estudio se desarrolló en una plantación de cuatro hectáreas con palma de aceite de tres años de trasplantada, propiedad de CoopeCalifornia R.L. ubicada en Parrita, Costa Rica. Se realizaron cuatro evaluaciones visuales del estado del SFS de diciembre de 2014 a febrero de 2017. Con estas evaluaciones se obtuvo la evolución espacio-temporal de la incidencia de la SFS durante veintiséis meses. En la última evaluación se realizó un vuelo con un VANT que portaba una cámara multiespectral Parrot Sequoia, con la cual se calcularon los índices de vegetación que luego fueron relacionados con el estado de SFS de las plantas. Resultados. Se encontró una alta variabilidad espacial y temporal del SFS durante todas las evaluaciones visuales. También se logró encontrar una fuerte relación entre los datos de las evaluaciones obtenidas en campo con los datos generados a partir de sensores remotos. El índice de vegetación Simple Ratio (SR) mostró diferencias significativas entre las plantas clasificadas como sanas y las plantas clasificadas con SFS, con grados 2 y 3 de severidad. Conclusiones. Es posible relacionar datos de campo, obtenidos mediante criterio experto, con información multiespectral de alta resolución espacial para identificar el SFS en plantaciones comerciales de palma aceitera.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta, A., & Munévar, F. (2003). Bud rot in oil palm plantations: link to soil physical properties and nutrient status. Better Crops International, 17(2), 22–25.

Arnal Barbedo, J. G. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), Article 40. https://doi.org/10.3390/drones3020040

Birth, G. S., & McVey, G. R. (1968). Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60(6), 640–643. https://doi.org/10.2134/agronj1968.00021962006000060016x

Calera, A., Campos, I., Osann, A., D’Urso, G., & Menenti, M. (2017). Remote sensing for crop water management: From ET modelling to services for the end users. Sensors, 17(5), Article 1104. https://doi.org/10.3390/s17051104

Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing (5th Ed.). Guilford Press.

Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., & Grégoire, J. M. (2001). Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 77(1), 22–33. https://doi.org/10.1016/S0034-4257(01)00191-2

Chinchilla, C. M. (2008). Las muchas caras de las pudriciones del cogollo (y de flechas) en palma aceitera y la importancia de un enfoque integral para su manejo. ASD Oil Palm Papers, 32, 11–23. https://bit.ly/3IaSUCx

Chuvieco, E. (2008). Teledetección ambiental (3a ed.). Ariel Ciencia.

Environmental Systems Research Institute. (2021). Cómo funciona Autocorrelación espacial (I de Moran global). ArcGIS. https://bit.ly/350f63Z

Exelis Visual Information Solutions, Inc. (2016). Broadband Greenness. L3HARRIS. https://bit.ly/3LP8czl

Fernández-Arango, D., Martín-Isabel, P., Vilar del Hoyo, L., & Pacheco-Labrador, J. (2015). Estimación del contenido de humedad de la vegetación a partir de imágenes hiperespectrales adquiridas por el sensor aeroportado CASI (Compact Airborne Spectrographic Imager). Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 16, 177–204. http://www.geofocus.org/index.php/geofocus/article/view/399

Ferguson, R., & Rundquist, D. (2018). Remote sensing for site-specific crop management. In D. K. Shannon, D. E. Clay, & N. R. Kitchen (Eds.), Precision agriculture basics (pp. 103–117). American Society of Agronomy, Crop Science Society of America, & Soil Science Society of America. https://doi.org/10.2134/precisionagbasics.2016.0092

Gitelson, A. A., & Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. International Journal of Remote Sensing, 18(12), 2691–2697. https://doi.org/10.1080/014311697217558

Gitelson, A. A., Merzlyak, M. N., & Chivkunva, O. B. (2001). Optical properties and nondestructive estimation of anthocyannin content in plant leaves. Photochemistry and Photobiology, 74(1), 38–45. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2

Gogoi, N. K., Deka, B., & Bora, L. C. (2018). Remote sensing and its use in detection and monitoring plant diseases: A review. Agricultural Reviews, 39(4), 307–3013. https://doi.org/10.18805/ag.r-1835

Gröll, K., Graeff, S., & Claupein, W. (2007, März 5-7). Use of vegetation indices to detect plant diseases [Conference presentation Referate der 27]. Agrarinformatik im Spannungsfeld zwischen Regionalisierung und globalen Wertschöpfungsketten, Stuttgart, Germany. https://bit.ly/33JE72Y

Hennessy, A., Clarke, K., & Lewis, M. (2020). Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sensing, 12(1), Article 113. https://doi.org/10.3390/rs12010113

Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

Instituto Meteorologico Nacional del Costa Rica. (2021). Datos climaticos estación de Damas en Aguirre. https://www.imn.ac.cr/mapa

Kaufman, Y. J., & Tanre. D. (1992). Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261–270. https://doi.org/10.1109/36.134076

Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), Article 3783. https://doi.org/10.3390/rs12223783

Liaghat, S., Ehsani, R., Mansor, S., Shafri, H. Z. M., Meon, S., Sankaran, S., & Azam, S. H. M. N. (2014). Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10), 3427–3439. https://doi.org/10.1080/01431161.2014.903353

Lillesand, T. M., Kiefer, R. & Chipman, J. (1987). Remote sensing and image interpretation (2nd ed.). John Wiley & Sons.

Loong Chong, K., Devi Kanniah, K., Pohl, C., & Pang Tan, K. (2017). A review of remote sensing applications for oil palm studies. Geo-Spatial Information Science, 20(2), 184–200. https://doi.org/10.1080/10095020.2017.1337317

Mahlein, A. K. (2016). Present and future trends in plant disease detection. Plant Disease, 100(2), 241–251. https://doi.org/10.1094/PDIS-03-15-0340-FE

Mahlein, A. K., Kuska, M. T., Behmann, J., Polder, G., & Walter, A. (2018). Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annual Review of Phytopathology, 56, 535-558. https://doi.org/10.1146/annurev-phyto-080417-050100

Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019

Martínez-Barbáchano, R., & Solís-Miranda, G. A. (2018). Caracterización espectral y detección de Flecha Seca en palma africana en Puntarenas, Costa Rica. Revista Geográfica de América Central, 61(2), 349-377. https://doi.org/10.15359/rgac.61-2.13

Mata, R., Rosales, A., Sandoval, D., Vindas, E., & Alemán, B. (2020). Subórdenes de suelos de Costa Rica [mapa digital, escala 1:200000]. Universidad de Costa Rica. http://www.cia.ucr.ac.cr/?page_id=139

Petropoulos, G., & Kalaitzidis, C. (2012). Multispectral vegetation index in remote sensing: An overview. In W. Zhang (Ed.), Ecological modeling (pp. 15–34). Nova Science Publishers, Inc.

Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S., & Upchurch, D. R. (2003). Remote sensing for site-specific crop management. Photogrammetric Engineering & Remote Sensing, 69(6), 647–664.

Pix4D SA. (2021). Pix4DMapper®. https://www.pix4d.com/es/acerca-de-pix4d

Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384. https://doi.org/10.1016/0034-4257(94)00114-3

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS (Paper A 20). In S. C. Freden, E. P. Mercanti, & M. A. Becker (Eds.), Third Earth Resources Technology Satellite-1 Symposium. Volume 1: Technical Presentations, section A (pp. 301–317). NASA. https://ntrs.nasa.gov/citations/19740022614

Sachs, J. D., Remans, R., Smukler, S. M., Winowiecki, L., Andelman, S. J., Cassman, K. G., Castle, D., DeFries, R., Denning, G., Fanzo, J., Jackson, L. E., Leemans, R., Lehmann, J., Milder, J. C., Naeem, S., Nziguheba, G., Palm, C. A., Pingali, P. L., Reganold, J. P., … Sanchez, P. A. (2012). Effective monitoring of agriculture: A response. Journal of Environmental Monitoring, 14(3), 738–742. https://doi.org/10.1039/c2em10584e

Santoso, H., Gunawan, T., Jatmiko, R. H., Darmosarkoro, W., & Minasny, B. (2011). Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precision Agriculture, 12(2), 233–248. https://doi.org/10.1007/s11119-010-9172-7

Santoso, H., Tani, H., & Wang, X. (2016). A simple method for detection and counting of oil palm trees using high-resolution multispectral satellite imagery. International Journal of Remote Sensing, 37(21), 5122–5134. https://doi.org/10.1080/01431161.2016.1226527

Shafri, H. Z. M., & Hamdan, N. (2009). Hyperspectral imagery for mapping disease infection in oil palm plantation using vegetation indices and red edge techniques. American Journal of Applied Sciences, 6(6), 1031–1035. https://doi.org/10.3844/ajassp.2009.1031.1035

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), Article 3136. https://doi.org/10.3390/rs12193136

Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968–977. https://doi.org/10.2134/agronj2005.0200

Tao, H., Feng, H., Xu, L., Miao, M., Long, H., Yue, J., Li, Z., Yang, G., Yang, X., & Fan, L. (2020). Estimation of crop growth parameters using UAV- based hyperspectral remote sensing data. Sensors, 20(5), Article 1296. https://doi.org/10.3390/s20051296

Thenkabail, P., Lyon, J., & Huete, A. (2011). Advances in hyperspectral remote sensing of vegetation and agricultural croplands. In P. Thenkabail, J. Lyon, & A. Huete (Eds.), Hyperspectral remote sensing of vegetation (pp. 3–36). CRC Press.

Ustin, S. L., Roberts, D. A., Gamon, J. A., Asner, G. P., & Green, R. O. (2004). Using imaging spectroscopy to study ecosystem processes and properties. BioScience, 54(6), 523–534. https://doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2

Van de Lande, H. L., & Zadoks, J. C. (1999). Spatial patterns of spear rot in oil palm plantations in Surinam. Plant Pathology, 48(2), 189–201. https://doi.org/10.1046/j.1365-3059.1999.00331.x

Viera-Torres, M., Sinde-González, I., Gil-Docampo, M., Bravo-Yandún, V., & Toulkeridis, T. (2020). Generating the baseline in the early detection of bud rot and red ring disease in oil palms by geospatial technologies. Remote Sensing, 12(19), Article 3229. https://doi.org/10.3390/rs12193229

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, Article 111402. https://doi.org/10.1016/j.rse.2019.111402

Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, Article 104943. https://doi.org/10.1016/j.compag.2019.104943

Zhao, H., Yang, C., Guo, W., Zhang, L., & Zhang, D. (2020). Automatic estimation of crop disease severity levels based on vegetation index normalization. Remote Sensing, 12(12), Article 1930. https://doi.org/10.3390/rs12121930

Publicado

2022-03-16

Cómo citar

Alemán-Montes, B., Henríquez-Henríquez, C., Largaespada-Zelaya, K., & Ramírez-Rodríguez, T. (2022). Evaluación de Flecha Seca en palma aceitera (Elaeis guineensis Jacq.) mediante imágenes multiespectrales, Costa Rica. Agronomía Mesoamericana, 33(2), 47557. https://doi.org/10.15517/am.v33i2.47557