Mineral nutrition and tolerance to Colletotrichum spp. of Andean blackberry (Rubus glaucus Benth.) in nursery

Authors

DOI:

https://doi.org/10.15517/am.v33i3.48655

Keywords:

Optimal dose, plant nutrition, response surface, integrated management, plant health

Abstract

Introduction. Several diseases affect the Andean blackberry cultivation in Colombia, where anthracnose (Colletotrichum spp.) stands out for generating total losses. Objective. To estimate the doses of N, P, K, and Ca that allow greater tolerance to C. gloeosporioides strain 52 in Andean blackberry seedlings. Materials and methods. The experiment was carried out in 2017, in a greenhouse located in Mosquera in the department of Cundinamarca (Colombia), with seedlings sown in a substrate based on a 3: 1 mixture of peat and rice husks. A randomized complete block design with a central composite arrangement of 25 treatments and 15 seedlings were used per experimental unit. The inoculation of plant material was carried out 53 days after had begun the application of the treatments, with mycelial discs at a concentration of 9.53×104 conidia. The severity percentage (Sev), incubation period (IP), disease development rate (r), plant height (PLH), stem diameter (StD), leaf area (LA), chlorophyll content index (CCI), dry weight of the aerial part, and concentration of nutrients were measured. The analysis of variance with Tukey’s test (p<0.05), correlation analysis, generation of response surface models, and principal component analysis with the t-test (p<0.05) was carried out. Results. The severity percentage showed significant differences in the plants that received the fertilization treatments, the allometric variables, and chlorophyll content index were negatively and significantly related with the severity percentage. Simple linear effects models and interaction between elements and four components were obtained, which explained 63 % of the observed variability. Conclusions. The doses of 55, 3, 14, and 9 g plant of N, P2O5, K2O, and CaO, respectively, allowed a higher tolerance of plants against strain 52, as well as higher values in growth variables.

Downloads

Download data is not yet available.

References

Afanador-Kafuri, L., González, A., Gañán, L., Mejía, J. F., Cardona, N., & Alvarez, E. (2014). Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Disease, 98(11), 1503–1513. https://doi.org/10.1094/PDIS-07-13-0752-RE

Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.

Agronet. (2021). Reporte: área, producción y rendimiento nacional por cultivo. Ministerio de Agricultura y Desarrollo Rural. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

Ahn, I. -P., Kim, S., Choi, W. -B., & Lee, Y. H. (2003). Calcium restores prepenetration morphogenesis abolished by polyamines in Colletotrichum gloeosporioides infecting red pepper. FEMS Microbiology Letters, 227(2), 237–241. https://doi.org/10.1016/S0378-1097(03)00686-4

Alves Freitas, V., Batista Fernandes, M., Hiydu Mizobutsi, E., Mizobutsi, G. P., Ferreira Ribeiro, R. C., & Facco Pegoraro, R. (2019). Anthracnose intensity and physical and chemical characteristics of ‘Prata anã’ banana under different nitrogen doses. Revista Brasileira de Fruticultura, 41(5), Article e-050. https://doi.org/10.1590/0100-29452019050

Bailey, J. A., & Jeger, M. J. (Eds.). (1992). Colletotrichum: Biology, pathology and control (1st ed.). CAB International.

Barker, A. V., & Bryson, G. M. (2006). Nitrogen. In A. V. Barker, & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 21–50). CRC Press.

Bocianowski, J., Szulc, P., Tratwal, A., Nowosad, K., & Piesik, D. (2016). The influence of potassium to mineral fertilizers on the maize health. Journal of Integrative Agriculture, 15(6), 1286–1292. https://doi.org/10.1016/S2095-3119(15)61194-7

Borkow, G., & Gabbay, J. (2009). Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Current Chemical Biology, 3(3), 272–278. https://doi.org/10.2174/2212796810903030272

Bosse, R. J., Bower, J. P., & Bertling, I. (2013). Systemic resistance inducers applied preharvest for Colletotrichum gloeosporioides control in avocados. Acta Horticulturae, 1007, 153–160. https://doi.org/10.17660/ActaHortic.2013.1007.14

Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: Micronutrients. In P. Marschner (Ed.), Marschner’s Mineral nutrition of higher plants (3rd ed., pp. 191–243). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00007-8

Cardona, W. A., & Bolaños-Benavides, M. M. (2019). Manual de nutrición del cultivo de mora de Castilla (Rubus glaucus Benth.) bajo un esquema de buenas prácticas en fertilización integrada. Corporación Colombiana de Investigación Agropecuaria. https://bit.ly/3zDNhdf

Cardona W. A., Gutiérrez, J. S., Monsalve O. I., & Bonilla, C. R. (2017). Efecto de la salinidad sobre el crecimiento vegetativo de plantas de mora de Castilla (Rubus glaucus Benth.) micorrizadas y sin micorrizar. Revista Colombiana de Ciencias Hortícolas, 11(2), 253–266. https://doi.org/10.17584/rcch.2017v11i2.6109

Cardona, W., Galindo, J., Bolaños, M., & Ramírez, M. (2018). Growth response surface for optimizing fertilization in Andean blackberry (Rubus glaucus Benth.) nurseries. Agronomía Colombiana, 36(2), 135–142. https://doi.org/10.15446/agron.colomb.v36n2.70274

Casierra-Posada, F., & Hernández, H. (2006). Evapotranspiración y distribución de materia seca en plantas de mora (Rubus sp.) bajo estrés salino. Revista U.D.C.A. Actualidad & Divulgación Científica, 9(1), 85–95.

Castaño, C. A., Morales, C. S., & Obando, F. H. (2008). Evaluación de las deficiencias nutricionales en el cultivo cultivo de la mora (Rubus glaucus) en condiciones controladas para bosque montano bajo. Agronomía, 16(1), 75–88.

Castaño Zapata, J. (2002). Principios básicos de fitoepidemiología (1ª ed.). Editorial Universidad de Caldas.

Chaboussou, F. (1967). La trophobiose ou les rapports nutritionnels entre la plante bôte et ses parasites. Annalles de Ia Societe Entomologique Francoise, 3(3), 797–809.

Chondraki, S., Tzerakis, C., & Tzortzakis, N. (2012). Influence of sodium chloride and calcium foliar spray on hydroponically grown parsley in nutrient film technique system. Journal of Plant Nutrition, 35(10), 1457–1467. https://doi.org/10.1080/01904167.2012.689906

Close, D. C., Bail, I., Hunter, S., & Beadle, C. L. (2005). Effects of exponential nutrient-loading on morphological and nitrogen characteristics and on after-planting performance of Eucalyptus globulus seedlings. Forest Ecology and Management, 205(1–3), 397–403. https://doi.org/10.1016/j.foreco.2004.10.041

Deshmukh, A. J., Mehta, B. P., Sabalpara, A. N., & Patil, V. A. (2012). In vitro effect of various nitrogen, carbon sources and pH regimes on the growth and sporulation of Colletotrichum gloeosporioides Penz. and Sacc causing anthracnose of Indian bean. Journal of Biopesticides, 5, 46–49.

Elmer, W. H., & Datnoff, L. E. (2014). Mineral nutrition and suppression of plant disease. In N. K. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (pp. 231–244), Academic Press. https://doi.org/10.1016/B978-0-444-52512-3.00251-5

Gao, X., Zhang, S., Zhao, X., & Wu, Q. (2018). Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. PLoS ONE, 13(7), Article e0200903. https://doi.org/10.1371/journal.pone.0200903

Gaudinier, A., Rodriguez-Medina, J., Zhang, L., Olson, A., Liseron-Monfils, C., Bågman, A. M., Foret, J., Abbitt, S., Tang, M., Li, B., Runcie, D. E., Kliebenstein, D. J., Shen, B., Frank, M. J., Ware, D., & Brady, S. M. (2018). Transcriptional regulation of nitrogen-associated metabolism and growth. Nature, 563, 259–264. https://doi.org/10.1038/s41586-018-0656-3

Gaviria-Hernández, V., Patiño-Hoyos, L. F., & Saldarriaga-Cardona, A. (2013). Evaluación in vitro de fungicidas comerciales para el control de Colletotrichum spp., en mora de castilla. Ciencia y Tecnología Agropecuaria, 14(1), 67–75. https://doi.org/10.21930/rcta.vol14_num1_art:344

Gupta, N., Debnath, S., Sharma, S., Sharma, P., & Purohit, J. (2017). Role of nutrients in controlling the plant diseases in sustainable agriculture. In V. Singh Meena, P. Kumar Mishra, J. Kumar Bisht, & A. Pattanayak (Eds.), Agriculturally important microbes for sustainable agriculture (pp. 217–262). Springer. http://doi.org/10.1007/978-981-10-5343-6_8

Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager Møller, I., & White, P. (2012). Functions of macronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 135–189). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00006-6

Hincapié Echeverri, O. D., Saldarriaga Cardona, A., & Díaz Diez, C. (2017). Biological, botanical and chemical alternatives for the control of blackberry (Rubus glaucus Benth.) diseases. Revista Facultad Nacional de Agronomía, 70(2), 8169–8176. http://doi.org/10.15446/rfna.v70n2.64521

Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. University of California. https://bit.ly/3A6AmBV

Huber, D. M., & Watson, R. D. (1974). Nitrogen form and plant disease. Annual Review of Phytopathology, 12, 139–165. https://doi.org/10.1146/annurev.py.12.090174.001035

López-Vásquez, J. M., Castaño-Zapata, J., Marulanda-Ángel, M. L., & López-Gutiérrez, A. M. (2013). Characterization of Anthracnose resistance caused by Glomerella cingulata and productivity of five Andean blackberry genotypes (Rubus glaucus Benth.). Acta Agronómica, 62(2), 178–185.

Lopo de Sá, A. F., Valiengo Valeri, S., Pessoa da Cruz, M. C., Barbosa, J. C., Machado Rezende, G., & Pozzetti Teixeira, M. (2014). Effects of potassium application and soil moisture on the growth of Corymbia citriodora plants. Cerne, 20(4), 645–651. https://doi.org/10.1590/01047760201420041422

Luo, L., Pan, S., Liu, X., Wang, H., & Xu, G. (2017). Nitrogen deficiency inhibits cell division-determined elongation, but not initiation, of rice tiller buds. Israel Journal of Plant Sciences, 64(3-4), 32–40. https://doi.org/10.1080/07929978.2016.1275367

Madani, B., Mohamed, M. T. M., Biggs, A. R., Kadir, J., Awang, Y., Tayebimeigooni, A., & Shojaei, T. R. (2014). Effect of pre-harvest calcium chloride applications on fruit calcium level and post-harvest anthracnose disease of papaya. Crop Protection, 55, 55–60. https://doi.org/10.1016/j.cropro.2013.10.009

Martin, R. R., Ellis, M. A., Williamson, B., & Williams, R. N. (2017). Compendium of raspberry and blackberry diseases and pests (2nd ed.) The American Phytopathological Society. https://apsjournals.apsnet.org/doi/epdf/10.1094/9780890545720.fm

Meng, X., Chen, W. -W., Wang, Y. -Y., Huang, Z. -R., Ye, X., Chen, L. -S., & Yang, L. -T. (2021). Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE, 16(2), Article e0246944. https://doi.org/10.1371/journal.pone.0246944

Mithöfer, A., & Maffei, M. E. (2017). General mechanisms of plant defense and plant toxins. In P. Gopalakrishnakone, C. Carlini, & R. Ligabue-Braun (Eds.), Plant toxins (pp. 3–24). Springer Reference. https://link.springer.com/content/pdf/10.1007%2F978-94-007-6464-4.pdf

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Nam, M. H., Jeong, S. K., Lee, Y. S., Choi, J. M., & Kim, H. G. (2006). Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathology, 55(2), 246–249. https://doi.org/10.1111/j.1365-3059.2006.01322.x

Nowembabazi, A., Taulya, G., Tinzaara, W., & Karamura, E. (2021). Effect of integrated potassium nutrition on Fusarium wilt tolerance in apple bananas. African Journal of Plant Science, 15(9), 257–265. https://doi.org/10.5897/AJPS2021.2140

Núñez-Zofío, M., Larregla, S., & Garbisu, C. (2011). Application of organic amendments followed by soil plastic mulching reduces the incidence of Phytophthora capsici in pepper crops under temperate climate. Crop Protection, 30(12), 1563–1572. https://doi.org/10.1016/j.cropro.2011.08.020

Okori, P., Rubaihayo, P. R., Adipala, E., & Dixelius, C. (2004). Interactive effects of host, pathogen and mineral nutrition on grey leaf spot piedemics in Uganda. European Journal of Plant Pathology, 110, 119–128. https://doi.org/10.1023/B:EJPP.0000015326.69837.00

Omondi Were, J., & Onyango Ochuodho, J. (2012). Virulence and pathogenicity of Colletotrichum sublineolum and Colletotrichum gloeosporioides from leaf, stem panicle tissues on advanced sorghum genotypes and genetic basis of observed responses. International Journal of Agricultural Science, 2(12), 336–345.

Pilbeam, D. J., & Morley, P. S. (2007). Calcium. In A. V. Barker, & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 121–144). CRC Press.

Prabhu, A. S., Fageria, N. K., & Berni, R. (2007). Phosphorus and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 45-55). The American Phytopathological Society.

Qiang, S., Zhang, Y., Fan, J., Zhang, F., Xiang, Y., Yan, S., & Wu, Y. (2019). Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China. Agricultural Water Management, 213, 996–1003. https://doi.org/10.1016/j.agwat.2018.12.021

Saldarriaga-Cardona, A., Castaño-Zapata, J., & Arango-Isaza, R. (2008). Caracterización del agente causante de antracnosis en tomate de árbol, manzano y mora. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 32(123), 145–156.

Saldarriaga-Cardona, A., Franco, G., Díaz Diez, C. A., & Múnera Uribe, G. E. (2017). Manual de campo para reconocimiento, monitoreo y manejo de las enfermedades de la mora (Rubus glaucus Benth.). Corporación Colombiana de Investigación Agropecuaria.

Singh, D. P. (2015). Plant nutrition in the management of plant diseases with particular reference to wheat. In L. P. Awasthi (Ed.), Recent advances in the diagnosis and management of plant diseases (pp. 273–284). Springer. https://doi.org/10.1007/978-81-322-2571-3_20

Song, X., Zhou, G., Ma, B. -L., Wu, W., Ahmad, I., Zhu, G., Yan, W., & Jiao, X. (2019). Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy, 9(3), Article 115. https://doi.org/10.3390/agronomy9030115

Stošić, S., Stojanović, S., Milosavljević, A., Peaf Dolovac, E., & Živković, S. (2014). Effect of calcium salts on postharvest fungal pathogens in vitro. Plant Protection, 65(1), 40–46. https://doi.org/10.5937/zasbilj1401040S

Sun, Y., Wang, M., Mur, L. A. J., Shen, Q., & Guo, S. (2020). Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences, 21(2), Article 572. https://doi.org/10.3390/ijms21020572

Thuynsma, R., Kleinert, A., Kossmann, J., Valentine, A., & Hills, P. N. (2016). The effects of limiting phosphate on photosynthesis and growth of Lotus japonicus. South African Journal of Botany, 104, 244–248. https://doi.org/10.1016/j.sajb.2016.03.001

Uhm, K. -H., Ahn, I. -P., Kim, S., & Lee, Y. -H. (2003). Calcium/Calmodulin-Dependent signaling for prepenetration development in Colletotrichum gloeosporioides. Phytopathology, 93(1), 82–87. https://doi.org/10.1094/PHYTO.2003.93.1.82

Walters, D. R., & Bingham, I. J. (2007). Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Annals of Applied Biology, 151(3), 307–324. https://doi.org/10.1111/j.1744-7348.2007.00176.x

Wamalwa, D. S., Sikuku, P. A., Netondo, G. W., & Khasabulli, B. D. (2019). Influence of NPK blended fertilizer application on chlorophyll content and tissue mineral contents of two finger millet varieties grown in acid soils of Kakamega, Western Kenya. International Journal of Plant & Soil Science, 27(4), 1–9. https://doi.org/10.9734/ijpss/2019/v27i430082

Wharton, P. S., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales del Jardín Botánico de Madrid, 61(1), 3–22. https://doi.org/10.3989/ajbm.2004.v61.i1.61

Williams, J. S., Hall, S. A., Hawkesford, M. J., Beale, M. H., & Cooper, R. M. (2002). Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiology, 128(1), 150–159. https://doi.org/10.1104/pp.010687

Xiang, D. -B., Yong, T. -W., Yang, W. -Y., Wan, -Y., Gong, W. -Z., Cui, L., & Lei, T. (2012). Effect of phosphorus and potassium nutrition on growth and yield of soybean in relay strip intercropping system. Scientific Research and Essays, 7(3), 342–351.

Zainuri, D., Joyce, C., Wearing, H., Coates, L., & Terry, L. (2001). Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of ‘Kensington Pride’ mango fruit. Australian Journal of Experimental Agriculture, 41(6), 805–813. https://doi.org/10.1071/EA99104

Zhang, D. W., Vu, T. S., Huang, J., Chi, C. Y., Xing, Y., Fu, D. D., & Yuan, Z. N. (2019). Effects of calcium on germination and seedling growth in Melilotus officinalis L. (Fabaceae) under salt stress. Pakistan Journal of Botany, 51(1), 1–9. https://doi.org/10.30848/PJB2019-1(44)

Published

2022-08-19

How to Cite

Bautista-Montealegre, L. G., DEantonio-Florido, L. Y., Cardona, W. A., Bolaños-Benavides, M. M., & Fischer, G. (2022). Mineral nutrition and tolerance to Colletotrichum spp. of Andean blackberry (Rubus glaucus Benth.) in nursery. Agronomía Mesoamericana, 33(3), 48655. https://doi.org/10.15517/am.v33i3.48655

Most read articles by the same author(s)