Rizobia identification promoters of the vegetable growth associated to chickpea (Cicer arietinum L.)
DOI:
https://doi.org/10.15517/am.v34i2.50929Keywords:
taxonomy, characterization, nodulation, selection, yieldAbstract
Introduction. Rhizobium has been used as a growth stimulator in leguminous. Different species of this group are associated with chickpea (Cicer arietium L.), so it is important to obtain isolated with capacity of benefitting their growth and productivity. Objective. To select and identify isolates of Rhizobium sp. in terms of their attributes as plant growth-promoting rhizobacteria with greater effectiveness in their association with chickpea cultivars. Materials and methods. The studies were carried out during the years 2017-2020, at the Instituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro of Humboldt”, Havana, Cuba. Three rhizobia strains, obtained from chickpea nodules were identified by 16S RNA gene sequencing and characterized for their potential as growth-promoting bacteria. An experiment was carried out in field conditions in two campaigns to demonstrate their effectiveness in the interaction with plants. For the experiments under laboratory conditions a completely randomized design was used, while the field trials were conducted under a randomized block design, in both cases an analysis of variance was performed. Results. The three bacterial strains associated with chickpea and identified as Rhizobium sp. fixed atmospheric nitrogen, solubilized calcium phosphate, released phytohormones and were able to inhibit the growth of Fusarium oxysporum, Fusarium incarnatum, and Fusarium moniliforme. Inoculation in chickpea increased the nodulation and the crop yield variables such as number of pods per plant and fresh grain mass (g). Conclusions. Rhizobium sp. strains were identified with attributes as plant growth-promoting bacteria associated with national chickpea cultivars, that increased their nodulation and yield.
Downloads
References
Altaf, M. M., & I. Ahmad. (2017). In vitro and in vivo biofilm formation by Azotobacter isolates and its relevance to rhizospere colonization. Rhizosphere, 3(1), 138–142. https://doi.org/10.1016/j.rhisph.2017.04.009
Ali, A., Khalid, R., Ali, S., Akram Z., & Hayat, R. (2015). Characterization of plant growth promoting rhizobacteria isolated from Chickpea (Cicer arietinum L.). British Microbiology Research Journal, 6(1), 32–40. https://doi.org/10.9734/BMRJ/2015/14496
Amaro-Arroche, E. J. (2012). Evaluación del balance de nitrógeno en suelos cultivados con garbanzo (Cicer arietinum L). Revista Avances, 14(3), 219–228.
Apáez Barrios, M., Escalante Estrada, J. A. S., Apáez Barrios, P., & Álvarez Hernandez, J. C. (2020). Producción, crecimiento y calidad nutrimental del garbanzo en función del nitrógeno y fósforo. Revista Mexicana Ciencias Agrícolas, 11(6), 1273–1284. https://doi.org/10.29312/remexca.v11i6.2226
Artigas Ramírez, M. D., España, M., Lewandowska, S., Yuan, K., Okazaki, S., Ohkama-Ohtsu, N., & Yokoyama, T. (2020). Phylogenetic analysis of symbiotic bacteria associated with two Vigna species under different agro-ecological conditions in Venezuela. Microbes and Environments, 35(1), article ME19720. http://doi.org/10.1264/jsme2.ME19120
Baldani, J. I., Massena Reis, V., Sampaio Videira, S., Boddey, L. E., & Divan Baldani, V. L. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiolgists. Plant and Soil, 384, 413–431. https://doi.org/10.1007/s11104-014-2186-6
Bautista, V. V., Barcellano, E. V., Monsalud, R. G., & Yokota, A. (2017). Isolation and identification of bacteria from root nodules of Philippine legumes using 16S rRNA gene sequencing. The Philippine Agricultural Scientist, 100(1), 103–117.
Costa de Camargo, A., Trevenzoli Favero, B., Caldeira Morzelle, M., Franchin, M., Alvarez-Parrilla, E., de la Rosa, L. A., Vilar Geraldi, M., Maróstica Júnior, M. R., Shahidi, F., & Schwember, A. R. (2019). Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. International Journal of Molecular Sciences, 20(11), Article 2644. https://doi.org/10.3390/ijms20112644
Di Benedetto, N. A., Corbo, M. R., Campaniello, D., Cataldi, M. P., Bevilacqua, A., Sinigaglia, M., & Flagella, Z. (2017). The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiology, 3(3), 413–434. https://doi.org/10.3934/microbiol.2017.3.413
Dibut, B., Shagarodsky, T., Martínez, R., Ortega, M., Ríos, Y., & Fey, L. (2005). Biofertilización del garbanzo (Cicer arietinum L.) con Mesorhizobium cicerii cultivado sobre suelo Ferralítico Rojo. Cultivos Tropicales, 26(1), 5–9. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/408
Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., Isawa, T., Mitsui, H., & Minamisawa, K. (2001). Endophytic colonization and in plant a nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environmental Microbiology, 67(11), 5285–5293. https://doi.org/10.1128/AEM.67.11.5285-5293.2001
Fierros Leyva, G. A., Acosta Gallegos, J. A., Ortega Murrieta, P. F., Padilla Valenzuela, I., Álvarez Bravo, A., Ramírez Soto, M., & Velarde Félix, S. (2019). Distribución de hongos asociados a pudriciones de raíz del garbanzo. Revista Mexicana de Ciencias Agrícolas, 10(1), 131–142. https://doi.org/https://doi.org/10.29312/remexca.v10i1.1730
Flórez-Márquez, J. D., Leal-Medina, G. I., Ardila-Leal, L. D., & Cárdenas-Caro, D. M. (2017). Aislamiento y caracterización de rizobacterias asociadas a cultivos de arroz (Oryza sativa L.) del Norte de Santander (Colombia). Agrociencia, 51(4), 373–391. https://agrociencia-colpos.org/index.php/agrociencia/article/view/1298
Glickmann, E., & Dessaux, Y. (1994). A critical examination of the specificity of the Salkowsky reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793–796. https://doi.org/10.1128/AEM.61.2.793-796.1995
Goberlak, A., Napora, A., & Kacprzak, M. (2014). The impact of plant growth promoting bacteria (PGPB) on the development of phytopathogenic fungi. Folia Biologica et Oecologica, 10, 107–112. https://doi.org/10.2478/fobio-2014-0008
Goswami, D., Thakker, J. N., Dhandhukia, P. C., & Tejada Moral, M. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2(1), Article 1127500. https://doi.org/10.1080/23311932.2015.1127500
Hernández Forte, I., & Nápoles García, M. C. (2019). Rhizobia promote rice (Oryza sativa L.) growth: First evidence in Cuba. In F. González-Andrés, D. Zúñiga-Davila, & E. Ormeño-Orrillo (Eds.), Microbial probiotics for agricultural systems: Advances in agronomics use (pp. 155–168). Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-17597-9_10
Hernández Jiménez, A., Pérez Jiménez, J. M., Bosch Infante, D., & Castro Speck, N. (2015). Clasificación de los suelos de Cuba 2015. Instituto Nacional de Ciencias Agrícolas.
Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, Article 393. https://doi.org/10.3389/fpls.2018.00393
Imen, H., Neila, A., Adnane, B., Manel, B., Mabrouk, Y., Saidi, M., & Bouazis, S. (2015). Inoculation with phosphate solubilizing Mesorhizobium strains improves the performance of chickpea (Cicer arietinum L.) under phosphorus deficiency. Journal of Plant Nutrition, 38(11), 1656–1671. https://doi.org/10.1080/01904167.2015.1061543
Jarvis, B. D. W., Van Berkum, P., Chen, W. X., Nour, S. M., Fernández, M. P., Cleyet-Marel, J. C., & Gillis, M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. International Journal of Systematic and Evolutionary Microbiology, 47(3), 895–898. https://doi.org/10.1099/00207713-47-3-895
Josey, D. P., Beynon, J. L., Johnston, A. W. B., & Beringer, J. E. (1979). Strain identification in Rhizobium using intrinsic antibiotic resistance. Journal of Applied Bacteriology, 46(2), 343–350. https://doi.org/10.1111/j.1365-2672.1979.tb00830.x
Khaitov, B., Karimov, A., Abdiev, A., Farrukh, J., & Park, K. (2020). Beneficial effect of Rhizobium inoculation on growth and yield of chickpea (Cicer arietinum L.) in saline soils. Bulgarian Journal of Agricultural Science, 26(1), 96–104. https://www.agrojournal.org/26/01-12.html
Korir, H., Mungai, N. W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of Rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, 8, Article 141. https://doi.org/10.3389/fpls.2017.00141
Lebrazi, S., Fadil, M., Chraibi, M., & Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production by Rhizobium sp. strain using response surface methodology. Journal of Genetic Engineering and Biotechnology, 18, Article 21. https://doi.org/10.1186/s43141-020-00035-9
León de la Rocha, J. F., Sariol Sánchez, D. M., & Juárez Cortez, J. A. (2019). Efecto de la fertilización nitrogenada y fechas de siembra en el cultivo de garbanzo (Cicer Arietinum L.) en Tehuacán, Puebla, México. Roca. Revista científico - Educacional de la Provincia Granma, 15(3), 25–34. https://revistas.udg.co.cu/index.php/roca/article/view/925
Li, Z., Li, Y., Zhang, Y., Cheng, B., Peng, Y., Zhang, X., Ma, X., Huang, L., & Yan, Y. (2018). Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover. Plant Physiology and Biochemestry, 129, 251–263. https://doi.org/10.1016/j.plaphy.2018.06.009
McFarland, J. (1907). The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association, 49(14), 1176–1178. http://doi.org/10.1001/jama.1907.25320140022001f
Madigan, M., Bender, K., Buckley, D., Sattley, W., & Stahl, D. (2017). Brock biology of microorganisms (15th ed.). Pearson.
Martínez-Hidalgo, P., Flores-Félix, J. -D, Menéndez, E., Rivas, R., Carro, L., Mateos, P. F., Martínez-Molina, E., León-Barrios, M., & Velázquez, E. (2015). Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from simbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Systematic and Applied Microbiology, 38(5), 346-350. https://doi.org/10.1016/j.syapm.2015.03.011
Martínez-Rodríguez, Ó. G., Can-Chulim, Á., Ortega-Escobar, H. M., Bojórquez-Serrano, J. I., Cruz-Crespo, E., García-Paredes, J. D., & Madueño-Molina, A. (2021). Fertilidad e índice de calidad del suelo de la cuenca del río San Pedro en Nayarit. Terra Latinoamericana, 39, Article e766. https://doi.org/10.28940/terra.v39i0.766
Mohamed Haasanien, S., Afiah, S. A., El-Hadidy, A. E., & Balah, A. M. (2017). Multifaceted potentialities of some rhizobacteria associated with sorghum plants on their growth and development. Egyptian Academic Journal of Biological Science, Microbiology, 9(1), 1–17. https://doi.org/10.21608/EAJBSG.2017.16339
Molina-Romero, D, Bustillos-Cristales, M. R., Rodríguez-Andrade, O., Morales-García, Y. E., Santiago-Saenz, Y., Castañeda-Lucio, M., & Muñoz-Rojas, J. (2015). Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas, 17(2), 24–34. https://www.biologicas.umich.mx/index.php?journal=biologicas&page=article&op=view&path%5B%5D=207
Moreno Reséndez, A., García Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68–83. http://doi.org/10.15446/rev.colomb.biote.v20n1.73707
Panday, D., Schumann, P., & Das, S. K. (2011). Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). International Journal of Systematic and Evolutionary Microbiology, 61(11), 2632–2639. https://doi.org/10.1099/ijs.0.028407-0
Paneque Pérez, V. M., Calaña Naranjo, J. M., Calderón Valdés, M., Borges Benítez, Y., Hernández García, T. C., & Caruncho Contreras, M. (2010). Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos. Instituto Nacional de Ciencias Agrícolas. https://bit.ly/3lFLAFC
Rogel, M., Ormeño-Orillo, E., & Martinez Romero, E. (2011). Symbiovars in rhizobia reflect bacterial adaptation to legumes. Systematic and Applied Microbiology, 34(2), 96–104. https://doi.org/10.1016/j.syapm.2010.11.015
Sánchez López, D. B., & Pérez Pazos, J. V. (2018). Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de Dioscorea rotundata in vitro. Agronomía Costarricense, 42(2), 75–91. https://doi.org/10.15517/rac.v42i2.33780
Shagarodsky, T., Chiang, ML., & López, Y. (2001). Evaluación de cultivares de garbanzo (Cicer arietinum L.) en Cuba. Agronomía Mesoamericana, 12(1), 95–98. https://doi.org/10.15517/am.v12i1.17298
Shagarodsky, T., Veitia, M., & Cabrera, M. (2021). Manual para el manejo y producción sostenible del cultivo del garbanzo (Cicer arietinum L.) en Cuba. Editorial Instituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt”.
Shekhar Nautiyal, C. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganism. FEMS Microbiology Letters, 170, 265–275. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
Singha, B., Behari Mazumder, P., & Pandey, P. (2017). Characterization of plant growth promoting rhizobia from root nodule of two legume species cultivated in Assam. Biological Sciences, 88, 1007–1016. https://doi.org/10.1007/s40011-016-0836-6
Stringlis, I. A., Proietti, S., Hickman, R., Van Verk, M. C., Zamioudis, C., & Pieterse, C. M. J. (2018). Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. The Plant Journal, 93(1), 166–180. https://doi.org/10.1111/tpj.13741
Vargas-Blandino, D., & Cárdenas-Travieso, R. (2021). Cultivo del garbanzo, una posible solución frente al cambio climático. Cultivos Tropicales, 42(1), Article e09. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1583
Velázquez, E., Carro, L., Flores-Félix, J. D., Menéndez, E., Ramírez-Bahena, M. -H., & Peix, A. (2019). Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition. In V. Kumar, R. Prasad, M. Kumar, & D. Choudhary (Eds.), Microbiome in Plant Health and Disease (pp. 79–104). Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_4
Velázquez, E., García-Fraile, P., Ramírez-Bahena, M. H., Rivas, R., & Molina-Martínez, E. (2017). Current status of the taxonomy of bacteria able to establish nitrogen-fixing legume symbiosis. In A. Zaidi, M. Khan, & J. Musarrat (Eds.), Microbes for legume improvement (pp. 1–43). Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_1
Vieille Oyarzo, P., Cruz Choappa, R., & Álvarez Duarte, E. (2019). Diferenciación morfofisiológica y molecular por curvas de melting de alta resolución (HRMA) y secuenciación del complejo Trichophyton mentagrophytes en cepas humanas en Valparaíso, Chile. Revista Argentina de Microbiología, 52(2), 88–95. https://doi.org/10.1016/j.ram.2019.05.002
Vincent, J. M. (1970). A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications.
Zafar, M., Abbasi, M. K., Rahim, N., Khaliq, A., Shaheen, A., Jamil, M., & Shahid, M. (2011). Influence of integrated phosphorus supply and plant growth promoting rhizobacteria on growth, nodulation, yield and nutrient uptake in Phaseolus vulgaris. African Journal of Biotechnology, 10(74), 16793–16807. https://www.ajol.info/index.php/ajb/article/view/97756
Zhang, J., Peng, S., Shang, Y., Brunel, B., Li, S., Zhao, Y., Liu, Y., Chen, W., Wang, E., Pratap Singh, R., & James, E. K. (2020). Genomic diversity of chickpea-nodulating rhizobia in Ningxia (north Central China) and gene flow within symbiotic Mesorhizobium muleiense populations. Systematic and Applied Microbiology, 43(4), Article 126089. https://doi.org/10.1016/j.syapm.2020.126089
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Marisel Ortega García, Yoania Ríos Rocafull, Lily Zelaya Molina, Juan Lara Aguilera, Ramón Orteaga Garibay, María Caridad Nápoles García
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).