Yield and yield components of tomato (Solanum lycopersicum) selected through pedigree method in the lowlands, Bogor-Indonesia
DOI:
https://doi.org/10.15517/am.2024.52476Keywords:
transgressive segregation, gene fixation, selection progress, genetic improvementAbstract
Introduction. Segregated populations can exhibit fluctuating yields from one generation to the next. This can sometimes perplex plant breeders when interpreting observed phenomena and determining which selection methods to choose. Objective. To analyze the performance and yield components of several tomato (Solanum lycopersicum) populations selected through the pedigree method in lowland environments in Bogor, West Java, Indonesia. Materials and methods. This study was conducted from December 2018 to April 2019 at the Experimental Garden of Bogor Agricultural University, Tajur II (207 meters above sea level), Bogor, West Java, Indonesia. Four generations were utilized, derived from 99D×Tora, i.e., 200 plants from the F2 generation and 100 plants each from the F3, F5, and F6 generations, respectively. Results. Population variance in terms of yield and yield components, as well as heritability, were lower in later generations compared to earlier generations. An increase in mean value was observed in the F3 generation, but decreased in the F5 and F6 generations across all observed traits. This could be attributed to fixation resulting from the elimination of epistatic genes that played a role in environmental stress. Conclusion. Pedigree selection in early generation was not suitable in lowland. It is suggested to evaluate mass selection methods or single seed descent, as these methods were able to maintain population variance into later generations.
Downloads
References
Abdelmoghny, A. M. (2021). Prediction of new genetic recombination in two Egyptian cotton crosses. Egyptian Journal of Agronomy, 43(1), 83–96. https://doi.org/10.21608/agro.2021.65016.1251
Acharya, B., Dutta, S., Dutta, S., & Chattopadhyay, A. (2018). Breeding tomato for simultaneous improvement of processing quality, fruit yield, and dual disease tolerance. International Journal of Vegetable Science, 24(5), 407–423. https://doi.org/10.1080/19315260.2018.1427648
Acquaah, G. (2012). Principles of plant genetics and breeding. John Wiley & Sons, Inc.
Ahmad, M. S. H. (2016). Studies on genetic variability, heritability and genetic advance in segregating generations of faba bean (Vicia faba L.). Middle East Journal of Agriculture, 5(1), 82–89. https://www.curresweb.com/mejar/mejar/2016/82-89.pdf
Ahmad, M., Iqbal, M., Ahmed Khan, B., Ullah Khan, Z., Akbar, K., Ullah, I., Shahid, M., & Rehman, A. (2017). Tomato, F2, F3, range, mean, selection response, heritability, variability, genetic advance. International Journal of Plant Research, 7(1), 1–4. http://article.sapub.org/10.5923.j.plant.20170701.01.html
Ahmad, M., Ahmed Khan, B., Iqbal, M., Saleem, M., Ahmad, F., Shahid, M., Rehman, A., Ullah, I., & Nawaz, A. (2018). Comparison of response of F4 and F3 generations of tomato from year to year selection. Asian Journal of Agriculture & Biology, 6(2), 245–250. https://www.asianjab.com/wp-content/uploads/2018/06/19.-OK_Response-of-F4-and-F3-generations-of-tomato-from-year-to-year-selection1.pdf
Asrat, Z. (2021). The improvement of maize (Zea mays L.) for drought stress tolerance. International Journal of Advanced Research in Biological Sciences, 8(7), 90–102. https://ijarbs.com/pdfcopy/2021/july2021/ijarbs10.pdf
Avdikos, I. D., Tagiakas, R., Tsouvaltzis, P., Mylonas, I., Xynias, I. N., & Mavromatis, A. G. (2021). Comparative evaluation of tomato hybrids and inbred lines for fruit quality traits. Agronomy, 11(3), Article 609. https://doi.org/10.3390/agronomy11030609
Cappetta, E., Andolfo, G., Di Matteo, A., Barone, A., Frusciante, L., & Ercolano, M. R. (2020). Accelerating tomato breeding by exploiting genomic selection approaches. Plants, 9(9), Article 1236. https://doi.org/10.3390/plants9091236
Collard, B. C. Y., Beredo, J. C., Lenaerts, B., Mendoza, R., Santelices, R., Lopena, V., Verdeprado, H., Raghavan, C., Gregorio, G. B., Vial, L., Demont, M., Biswas, P. S., Iftekharuddaula, K. M., Akhlasur Rahman, M., Cobb, J. N., & Rafiqul Islam, M. (2017). Revisiting rice breeding methods – evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Production Science, 20(4), 337–352. https://doi.org/10.1080/1343943X.2017.1391705
Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de los Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R. K. (2017). Genomic Selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22(11), 961–975. https://doi.org/10.1016/j.tplants.2017.08.011
Dama, H., Aisyah, S. I., Sudarsono, S., Dewi, A. K., & Wibisono, K. (2022). Identification, selection, and response of radiation induced towuti mutant rice (Oryza sativa L.) in drought stress conditions. Atom Indonesia, 48(2), 107–114. https://doi.org/10.17146/aij.2022.1198
de Paula, R. G., Pereira, G. S., de Paula, I. G., Carneiro, A. L. N., Carneiro, P. C. S., dos Anjos, R. S. R., & Carneiro, J. E. S. (2020). Multipopulation recurrent selection: An approach with generation and population effects in selection of self-pollinated progenies. Agronomy Journal, 112(6), 4602–4612. https://doi.org/10.1002/agj2.20422
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Addison Wesley Longman, Inc.
Fisher, R. A. (1919). XV.—The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399–433. https://doi.org/10.1017/S0080456800012163
Hakim, L., & Suyamto, S. (2017). Gene action and heritability estimates of quantitative characters among lines derived from varietal crosses of soybean. Indonesian Journal of Agricultural Science, 18(1), 25–32. https://media.neliti.com/media/publications/178192-none-88528313.pdf
Hamam, K. A. (2014). Late and early pedigree selection for grain yield with three selection criteria in two populations in bread wheat. Journal of Plant Production, 5(11), 1831–1847. https://doi.org/10.21608/jpp.2014.64730
Hernández-Leal, E., Lobato-Ortiz, R., García-Zavala, J. J., Hernández-Bautista, A., Reyes-López, D., & Bonilla-Barrientos, O. (2019). Stability and breeding potential of tomato hybrids. Chilean Journal of Agricultural Research, 79(2), 181–189. https://doi.org/10.4067/S0718-58392019000200181
Kahani, F., & Hittalmani, S. (2016). Identification of F2 and F3 segregants of fifteen rice crosses suitable for cultivation under aerobic situation. SABRAO Journal of Breeding and Genetics, 48(2), 219–229. https://sabraojournal.org/wp-content/uploads/2018/01/SABRAO-J-Breed-Genet-48-2-219-229-Kahani-1.pdf
Khalaf, A. E. A., Eid, M. A. M., Ghallab, K. H., El-Areed, S. R. M., Yassein, A. A. M., Rady, M. M., Ali, E. F., & Majrashi, A. (2021). Development of a five-parameter model to facilitate the estimation of additive, dominance, and epistatic effects with a mediating using bootstrapping in advanced generations of wheat (Triticum aestivum L.). Agronomy, 11(7), Article 1325. https://doi.org/10.3390/agronomy11071325
Limbongan, Y. L., Driyunitha, D., Sjahril, R., Riadi, Muh., Jamaluddin, I., Okasa, A. M., & Panga, N. J. (2021). Heritability and genetic advancement on agronomic characters of Toraja red rice x Inpari-4 white rice genotypes. Biodiversitas Journal of Biological Diversity, 22(8), 3446–3451. https://doi.org/10.13057/biodiv/d220842
Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A., Zhang, Y., Lin, K., Li, C., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220–1226. https://doi.org/10.1038/ng.3117
Massot Padilha, H. K., & Barbieri, R. L. (2016). Plant breeding of chili peppers (Capsicum, Solanaceae) – A review. Australian Journal of Basic and Applied Sciences, 10(15), 148–154.
Mather, S. K., & Jinks, J. L. (1982). Biometrical Genetics (3rd ed.). Springer Nature. https://doi.org/10.1007/978-1-4899-3406-2
Mawasid, F. P., Syukur, M., & Trikoesoemaningtyas. (2019). Epistatic gene control on the yield of tomato at medium elevation in the tropical agroecosystem. Biodiversitas Journal of Biological Diversity, 20(7), 1880–1886. https://doi.org/10.13057/biodiv/d200713
Mistry, C., Kathiria, K. B., Sabolu, S., & Kumar, S. (2016). Heritability and gene effects for yield related quantitative traits in eggplant. Annals of Agricultural Sciences, 61(2), 237–246. https://doi.org/10.1016/j.aoas.2016.07.001
Oliveira Silva, C., Toshiyuki Hamawaki, O., Oliveira Nogueira, A. P., Ramos Campos de Almeida, M., Goulart Castro, D., Marques, F. S., Lemes Hamawaki, R., Lemes Hamawaki, C. D., Marques Cardoso, G., & Rodrigues Diniz, V. H. (2021). Genetic parameters and selection indexes in F2 and F2:3 soybean populations. Agronomy Journal, 113(4), 2991–3004. https://doi.org/10.1002/agj2.20692
Pontes Júnior, V. A., Melo, P. G. S., Pereira, H. S., & Melo, L. C. (2016). Genetic potential of common bean progenies obtained by different breeding methods evaluated in various environments. Genetics and Molecular Research, 15(3), Article gmr.15038622. https://doi.org/10.4238/gmr.15038622
Presello, D. A., Reid, L. M., Butler, G., & Mather, D. E. (2005). Pedigree selection for Gibberella ear rot resistance in maize. Euphytica, 143(1–2), 1–8. https://doi.org/10.1007/s10681-005-6149-0
Purnamasari, I., Sobir, & Syukur, M. (2019). Diversity and inheritance in cowpea (Vigna unguiculata) on protein and yield components characters: Diversity and inheritance in cowpea (Vigna unguicullata (L.) Walp) on protein and yield components characters. Biodiversitas Journal of Biological Diversity, 20(5), 1294–1298. https://doi.org/10.13057/biodiv/d200507
Ramos Guimarães, P. H., Guimarães Santos Melo, P., Centeno Cordeiro, A. C., Pereira Torga, P., Nakano Rangel, P. H., & Pereira de Castro, A. (2021). Correction to: Index selection can improve the selection efficiency in a rice recurrent selection population. Euphytica, 217, Article 133. https://doi.org/10.1007/s10681-021-02858-0
Rini, H., Suwarno, Sintho Wahyuning, A., Munif, G., & Hajrial, A. (2018). Pedigree selection to obtained rice varieties adapted truso low phospho conditions. Russian Journal of Agricultural and Socio-Economic Sciences, 82(10), 234–243. https://doi.org/10.18551/rjoas.2018-10.26
Ritonga, A. W., Chozin, M. A., Syukur, M., Maharijaya, A., & Sobir, S. (2018). Short Communication: Genetic variability, heritability, correlation, and path analysis in tomato (Solanum lycopersicum) under shading condition. Biodiversitas Journal of Biological Diversity, 19(4), 1527–1531. https://doi.org/10.13057/biodiv/d190445
Ritonga, A. W., Syukur, M., Yunianti, R., & Sobir. (2018). Assessment of natural cross-pollination levels in chili pepper (Capsicum annuum L.). IOP Conference Series: Earth and Environmental Science, 196, Article 012008. https://doi.org/10.1088/1755-1315/196/1/012008
Rosminah, Maharijaya, A., & Syukur, D. M. (2019). Selection response pattern of chili pepper (Capsicum annuum L.) species. Jurnal Agronomi Indonesia, 47(1), 47–52. https://doi.org/10.24831/jai.v47i1.21922
Said, A. A. (2014). Generation mean analysis in wheat (Triticum aestivum L.) under drought stress conditions. Annals of Agricultural Sciences, 59(2), 177–184. https://doi.org/10.1016/j.aoas.2014.11.003
Sarutayophat, T., & Nualsri, C. (2010). The efficiency of pedigree and single seed descent selections for yield improvement at generation 4 (F4) of two yardlong bean populations. Kasetsart Journal (Natural Science), 44, 343–352.
Sinha, P., Singh, V. K., Bohra, A., Kumar, A., Reif, J. C., & Varshney, R. K. (2021). Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. Theoretical and Applied Genetics, 134(6), 1829–1843. https://doi.org/10.1007/s00122-021-03847-6
Syukur, M., Sujiprihati, S., & Yunianti, R. (2015). Plant Breeding Techniques. Penebar Swadaya.
Thien Tran, L., Tuan Nguyen, A., Hong Nguyen, M., Tien Nguyen, L., Thi Nguyen, M., Thi Trinh, L., Thi Tran, D. -T., Viet Ta, S., Hoshikawa, K., Sugimoto, K., & Ezura, H. (2021). Developing new parthenocarpic tomato breeding lines carrying iaa9-3 mutation. Euphytica, 217, Article 139. https://doi.org/10.1007/s10681-021-02853-5
Varghese, A., Joseph, J., Sarath, P. S., Sunil, R., Mathew, D., Biju, S., & Sindhumole, P. (2021). Development of dual purpose cowpea culture (Vigna unguiculata (L.) Walp.) with high grain yield. Journal of Tropical Agriculture, 59(1), 45–54. https://jtropag.kau.in/index.php/ojs2/article/view/819/580
Wanga, M. A., Shimelis, H., Mashilo, J., & Laing, M. D. (2021). Opportunities and challenges of speed breeding: A review. Plant Breeding, 140(2), 185–194. https://doi.org/10.1111/pbr.12909
Wibisono, K., Aisyah, S. I., Nurcholis, W., & Suhesti, S. (2021). Performance of putative mutants and genetic parameters of Plectranthus amboinicus (L.) through mutation induction with colchicine. AGROSAINSTEK: Jurnal Ilmu Dan Teknologi Pertanian, 5(2), 89–99. https://doi.org/10.33019/agrosainstek.v5i2.247
Wibisono, K., Aisyah, S. I., Nurcholis, W., & Suhesti, S. (2022). Sensitivity in callus tissue of Plectranthus amboinicus (L.) through mutation induction with colchicine. AGRIVITA Journal of Agricultural Science, 44(1), 82–95. https://doi.org/10.17503/agrivita.v44i1.3058
Wibisono, K., Aisyah, S. I., Suhesti, S., & Nurcholis, W. (2019). Optimization of Total Flavonoids Extraction and α-glucosidase inhibitory activity from Plectranthus amboinicus (Lour.) spreng. Leaves using the simplex-centroid design. Molekul, 14(2), 84–91. http://dx.doi.org/10.20884/1.jm.2019.14.2.497
Yadav, S., Sandhu, N., Dixit, S., Kumar Singh, V., Catolos, M., Rani Mazumder, R., Rahman, M. A., & Kumar, A. (2021). Genomics-assisted breeding for successful development of multiple-stress-tolerant, climate-smart rice for southern and southeastern Asia. The Plant Genome, 14(1), Article e20074. https://doi.org/10.1002/tpg2.20074
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fajar Prakoso Mawasid, Muhamad Syukur, Trikoesoemaningtyas Trikoesoemaningtyas, Kunto Wibisono
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).