Pesticides used in tobacco (Nicotiana tabacum) cultivation in Cuba: toxicological and ecotoxicological pressure

Authors

DOI:

https://doi.org/10.15517/am.2024.52498

Keywords:

organophosphates, aquatic organisms, pesticide application equipment

Abstract

Introduction. Pesticides are used to control pests and diseases in agricultural activities. Improper management of these products poses a potential risk to human health and the environment. Objective. To evaluate the (eco)toxicological pressure exerted by synthetic pesticides on tobacco crops (Nicotiana tabacum) in the province of Sancti Spíritus, Cuba. Materials and methods. A database from the Provincial Directorate of Plant Health for the period 2016-2019 was used, where the pesticides assigned to the province for this crop were compared with those reported by interviewed farmers. The dual indicator POCER was used to obtain the results, determining the pressure exerted by different pesticides and their harmful reference on humans and the environment. Results. The trend in pesticide consumption (summarized in tables and graphs) showed 50 % decrease, corresponding to the country’s crop protection policy. Farmers mentioned the use of authorized and unauthorized active ingredients in the conducted surveys, and sixteen high-risk active ingredients were detected in the analyzed samples. Evaluating the POCER results and analyzed samples, a significant (eco)toxicological pressure was observed on both the environment and human health, exerted by a group of high-toxicity active ingredients used in tobacco cultivation in the province. Conclusion. Using the dual indicator POCER provides an evaluation of the (eco)toxicological pressure exerted by synthetic pesticides used in the tobacco cultivation (Nicotiana tabacum) in the province of Sancti Spíritus, Cuba, for the study period.

Downloads

Download data is not yet available.

References

Bagheri, A., Pirmoazen, S., & Sadegh Allahyari, M. (2021). Assessment of farmers’ understanding of the pictograms displayed on pesticide labels. Environmental Science and Pollution Research, 28(14), 17812–17825. https://doi.org/10.1007/s11356-020-11821-w

Bastidas-Bastidas, P. J., Leyva-Morales J.B., Barraza-Lobo, A. L., Olmeda- Rubio, C., Pineda-Landeros, J. M., & Ramírez-Reyes. (2014). Evaluación de los datos de monitoreo sobre niveles de residuos de plaguicidas en hortalizas cultivadas en el valle agrícola de Culiacán, Sinaloa, México (período: 2011–2013). In L. O. Orozco Hernández, L. E. Garay Martínez, & M. R. Torres Vitela (Eds.), Investigaciones en Inocuidad de Alimentos (pp. 20–23). Prometeo Editores S.A. de C.V.

Beinat, E., & van den Berg, R. (1996). Euphids, a decision support system for the admission of pesticides. PBL Netherlands Environmental Assessment Agency.

Bernal, E. (2014). Limit of detection and limit of quantification determination in gas chromatography. In X. Guo (Ed.), Advances in gas chromatography (pp. 57–81). INTECH. https://www.intechopen.com/chapters/46058

Blanco-Valdes, Y., Cartaya-Rubio, O. E., & Espina-Nápoles, M. (2022). Efecto de diferentes formas de aplicación del Quitomax® en el crecimiento del maíz. Agronomía Mesoamericana, 33(3), Artículo 47246. https://doi.org/10.15517/am.v33i3.47246

Bozdogan, A. M., Yarpuz-Bozdogan, N., & Tobi, I. (2015). Relationship between environmental risk and pesticide application in cereal farming. International Journal of Environmental Research, 9(3), 1047–1054. https://ijer.ut.ac.ir/article_992.html

Bueno, M. R., & Da Cunha, J. P. A. R. (2020). Environmental risk for aquatic and terrestrial organisms associated with drift from pesticides used in soybean crops. Anais Da Academia Brasileira de Ciências, 92(Suppl. 1), 779–786. https://doi.org/10.1590/0001-3765202020181245

Claeys, S., Vagenende, B., De Smet, B., Lelieur, L., & Steurbaut, W. (2005). The POCER indicator: A decision tool for non-agricultural pesticide use. Pest Management Science, 61(8), 779–786. https://doi.org/10.1002/ps.1062

Claus, G., Pisman, M., Spanoghe, P., Smagghe, G., & Eeraerts, M. (2021). Larval oral exposure to thiacloprid: Dose-response toxicity testing in solitary bees, Osmia spp. (Hymenoptera: Megachilidae). Ecotoxicology and Environmental Safety, 215, Article 112143. https://doi.org/10.1016/j.ecoenv.2021.112143

Claus, G., & Spanoghe, P. (2020). Quantification of pesticide residues in the topsoil of Belgian fruit orchards: terrestrial environmental risk assessment. Pest Management Science, 76(10), 3495–3510. https://doi.org/10.1002/ps.5811

Cunha, J. P., Chueca, P., Garcerá, C., & Moltó, E. (2012). Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain. Crop Protection, 42, 116–123. https://doi.org/10.1016/j.cropro.2012.06.001

Damalas, C., Koutroubas, S., & Abdollahzadeh, G. (2019). Drivers of personal safety in agriculture: A case study with pesticide operators. Agriculture, 9(2), Article 34. https://doi.org/10.3390/agriculture9020034

European Commission Directorate General for Health and Food Safety. (2021). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed (SANTE 11312/2021 v2). https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf

European Commission. (2022, February 10). Regulations. Commission Delegated Regulation (EU) 2022/643. Official Journal of European Union, 118, 14–54. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0643

Fevery, D., Houbraken, M., & Spanoghe, P. (2016). Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium. Science of the Total Environment, 550, 514–521. https://doi.org/10.1016/j.scitotenv.2016.01.123

Food and Agriculture Organization of the United Nations. (1979, December 11-18). Report of the eleventh session of the Codex Commities on Pesticide Residues. Food and Agriculture Organization of the United Nations, & World Health Organization.

Food and Agriculture Organization of the United Nations. (2017). The future of food and agriculture. Trends & challenges. https://www.fao.org/3/i6583e/i6583e.pdf

Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations International Children’s Emergency Fund, World Food Programme, & World Health Organization. (2020). The state of food security and nutrition in the World. Transforming food systems for affordable healthy diets. https://doi.org/https://doi.org/10.4060/ca9692en

Food and Agriculture Organization of the United Nations, & World Health Organization. (2020). International Code of Conduct on Pesticide Management. Guidelines for personal protection when handling and applying pesticides. https://iris.who.int/bitstream/handle/10665/330917/9789240000223-eng.pdf?sequence=1

Fungicide Resistance Action Committee. (2018). FRAC Code List©*2018: Fungicides sorted by mode of action. http://www.phi-base.org/images/fracCodeList.pdf

García Hernández, J., Leyva Morales, J. B., Martínez Rodríguez, I. E., Hernández Ochoa, M. I., Aldana Madrid, M. L., Rojas García, A. E., Betancourt Lozano, M., Perez Herrera, N. E., & Perera Rios, J. H. (2018). Estado actual de la investigación sobre plaguicidas en México. Revista Internacional de Contaminación Ambiental, 34(Esp. 01), 29–60. https://doi.org/10.20937/RICA.2018.34.esp01.03

Gentil-Sergent, C., Basset-Mens, C., Gaab, J., Mottes, C., Melero, C., & Fantke, P. (2021). Quantifying pesticide emission fractions for tropical conditions. Chemosphere, 275, Article 130014. https://doi.org/10.1016/j.chemosphere.2021.130014

Han, T., & Wang, G. (2019). Peroxidase-like activity of acetylcholine-based colorimetric detection of acetylcholinesterase activity and an organophosphorus inhibitor. Journal of Materials Chemistry B, 7(16), 2613–2618. https://doi.org/10.1039/c8tb02616e

Houbraken, M., Bauweraerts, I., Fevery, D., Van Labeke, M. -C., & Spanoghe, P. (2016). Pesticide knowledge and practice among horticultural workers in the Lâm Đồng region, Vietnam. Science of the Total Environment, 550, 1001–1009. https://doi.org/10.1016/j.scitotenv.2016.01.183

Huang, Y., Shi, T., Luo, X., Xiong, H., Min, F., Chen, Y., Nie, S., & Xie, M. (2019). Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chemistry, 275, 255–264. https://doi.org/10.1016/j.foodchem.2018.09.094

Insecticide Resistance Action Committee. (2018). Mode of action classification scheme (version 9.1). Arizona University. https://acis.cals.arizona.edu/community-ipm/community-pesticide-safety/irac-mode-of-action-classification-scheme

Lagos-Alvarez, Y. B., Díaz-Ramírez, L. M., Melo-Velasco, J. M., & Hurtado Bermudez, J. J. (2022). Residuos de plaguicidas en mora (Rubus glaucus Benth.) en el Valle del Cauca, Colombia. Agronomía Mesoamericana, 33(2), Artículo 47538. https://doi.org/10.15517/am.v33i2.47538

Leyva Morales, J. B., García de la Parra, L. M., Bastidas Bastidas, P. de J., Astorga Rodríguez, J. E., Bejarano Trujillo, J., Cruz Hernández, A., Martínez Rodríguez, I. E., & Betancourt Lozano, M. (2014). Uso de plaguicidas en un valle agrícola tecnificado en el noroeste de México. Revista Internacional de Contaminación Ambiental, 30(3), 247–261. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/45542/40955

Leyva Morales, J. B., Martínez Rodríguez, I. E., Bastidas-Bastidas, P. de J., & Betancourt Lozano, M. (2017). Plaguicidas altamente peligrosos utilizados en el valle de Culiacán, Sinaloa. In F. Bejerano González (Ed.), Los plaguicidas altamente peligrosos en México (1ª ed., Cap. 6, pp. 197–207). Red de Acción sobre Plaguicidas y Alternativas en México, A. C. https://www.rapam.org/wp-content/uploads/2017/09/Libro-Plaguicidas-Final-14-agst-2017sin-portada.pdf

López Dávila, E., Houbraken, M., De Rop, J., Wumbei, A., Du Laing, G., Romero Romero, O., & Spanoghe, P. (2020). Pesticides residues in tobacco smoke: risk assessment study. Environmental Monitoring and Assessment, 192, Article 615. https://doi.org/10.1007/s10661-020-08578-7

López Dávila, E., Martínez Castro, Y., & Romero Romero, O. (2022). Características y consecuencias adversas a la salud humana de agroquímicos usados en la agricultura cubana. Revista Cubana de Salud Pública, 48(Supl. revisiones), Artículo e2810. http://www.revsaludpublica.sld.cu/index.php/spu/article/view/2810

López Dávila, E., Ramos Torres, L., Houbraken, M., Du Laing, G., Romero Romero, O., & Spanoghe, P. (2020). Knowledge and practical use of pesticides in Cuba. Ciencia y Tecnologia Agropecuaria, 21(1), Article e1282. https://doi.org/10.21930/rcta.vol21_num1_art:1282

Muller, A., Schader, C., El-Hage Scialabba, N., Brüggemann, J., Isensee, A., Erb, K. -H., Smith, P., Klocke, P., Leiber, F., Stolze, M., & Niggli, U. (2017). Strategies for feeding the world more sustainably with organic agriculture. Nature Communications, 8, Article 1290. https://doi.org/10.1038/s41467-017-01410-w

Musarurwa, H., Chimuka, L., Pakade, V. E., & Tavengwa, N. T. (2019). Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. Journal of Food Composition and Analysis, 84, Article 103314. https://doi.org/10.1016/j.jfca.2019.103314

Oficina Nacional de Estadistica e Información. (2019). Serie estadística de agricultura, ganadería, silvicultura y pesca. https://www.onei.gob.cu/agricultura

Oliveira Jardim, A. N., Page Brito, A., van Donkersgoed, G., Boon, P. E., & Dutra Caldas, E. (2018). Dietary cumulative acute risk assessment of organophosphorus, carbamates and pyrethroids insecticides for the Brazilian population. Food and Chemical Toxicology, 112, 108–117. https://doi.org/10.1016/J.FCT.2017.12.010

Papenfus, H. D. (2017). Responsible use of crop protection agents (CPAs) in tobacco leaf production (CORESTA Guide N°19). Cooperation Centre for Scientific Research Relative to Tobacco. https://bit.ly/3RQPTwe

Pérez-Consuegra, N. (2018). Alternativas a los plaguicidas altamente peligrosos en América Latina y el Caribe. Asociacion Cubana de Técnicos Agrícolas y Forestales. https://ipen.org/sites/default/files/documents/alternativas_pap_v_final_16_enero_19.pdf

Rodríguez-Rojas, A., & Peraza-Padilla, W. (2022). Uso de Beauveria bassiana en el control de tecla [Strymon megarus (Lepidoptera: Lycaenidae)] en piña (Ananas comosus (L.) Merr.). Agronomía Mesoamericana, 33(3), Artículo 48235. https://doi.org/10.15517/am.v33i3.48235

Sarkar, S., Dias Bernardes Gil, J., Keeley, J., Mohring, N., & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. European Union. https://doi.org/10.2861/28995

Singh, A., Dhiman, N., Kumar Kar, A., Singh, D., Prasad Purohit, M., Ghosh, D., & Patnaik, S. (2019). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials, 385, Article 121525. https://doi.org/10.1016/J.JHAZMAT.2019.121525

Tassin de Montaigu, C., & Goulson, D. (2020). Identifying agricultural pesticides that may pose a risk for birds. PeerJ, 8, Article e9526. https://doi.org/10.7717/peerj.9526

Tsakirakis, A. N., Kasiotis, K. M., Glass, C. R., Charistou, A. N., Anastasiadou, P., Gerritsen-Ebben, R., & Machera, K. (2022). Sequential indoor use of pesticides: Operator exposure via deposit transfer from sprayed crops and contaminated application equipment. Applied Sciences, 12(8), Article 3909. https://doi.org/10.3390/app12083909

Vercruysse, F., & Steurbaut, W. (2002). POCER, the pesticide occupational and environmental risk indicator. Crop Protection, 21(4), 307–315. https://doi.org/10.1016/S0261-2194(01)00102-8

Vryzas, Z. (2018). Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, 4, 5–9. https://doi.org/10.1016/j.coesh.2018.03.001

World Health Organization. (2020). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019. https://bit.ly/3S5oZjQ

Wustenberghs, H., Fevery, D., Lauwers, L., Marchand, F., & Spanoghe, P. (2018). Minimising farm crop protection pressure supported by the multiple functionalities of the DISCUSS indicator set. Science of the Total Environment, 618, 1184–1198. https://doi.org/10.1016/j.scitotenv.2017.09.211

Yarpuz-Bozdogan, N., & Bozdogan, A. M. (2016). Pesticide exposure risk on occupational health in herbicide application. Fresenius Environmental Bulletin and Advances in Food Science, 25(9), 3720–3727.

Published

2024-01-09

How to Cite

López Dávila, E. (2024). Pesticides used in tobacco (Nicotiana tabacum) cultivation in Cuba: toxicological and ecotoxicological pressure. Agronomía Mesoamericana, 35, 52498. https://doi.org/10.15517/am.2024.52498