Biocontrol of Penicillium digitatum with secondary metabolites of endophytic fungi in mandarin fruits
DOI:
https://doi.org/10.15517/am.2024.55682Keywords:
antibiosis, mold, biological control, antagonismAbstract
Introduction. “Green mold,” caused by Penicillium digitatum is one of the phytosanitary issues that limits citrus production. For its control, synthetic fungicides are used, which have lost effectiveness due to resistance developed by the fungus. An alternative is the use of endophytic fungi with biocontrol action. Objective. To evaluate the effect of secondary metabolites (SM) from endophytic fungi (EF) on the mycelial inhibition of Penicillium digitatum and the effectiveness of disease control in mandarin fruits (Citrus reticulata) post-harvest. Materials and methods. The study was conducted in 2022, using a completely randomized experimental design in the Plant Health Laboratory at the Universidad Nacional de Cañete (UNDC), Lima, Peru. For the antibiosis test, secondary metabolites were extracted from ten strains of EF from the genera Trichoderma sp., Fusarium sp., and Aspergillus sp., where mycelial inhibition of the pathogen (%) was evaluated. SMs were sprayed at 15 % (v/v) concentration on mandarin fruits that were disinfected and inoculated with the pathogen by spraying (1x 105 CFU/cc). Additionally, a commercial biocontrol, a vegetable oil, and a fungicide were used. After 6 and 9 days, disease incidence (%) and severity index (0, 1, 2, 3) were evaluated. Results. Secondary metabolites from strains the HEA-111 (Aspergillus), HEA-109 (Fusarium), and HSA-1 (Trichoderma) showed the highest mycelial inhibition with 95.05 %, 87.51 %, and 47.47 %, respectively. In mandarin fruits treated with SMs from strains HEA-109 and HSA-1, there was a control of 80 % and 55 %, respectively. Conclusions. SMs from EF were effective in inhibiting the mycelial growth of P. digitatum and reduces disease progression in mandarin fruits post-harvest.
Downloads
References
Agraria.pe. (2023, mayo 23). Hemos observado una fuerte demanda de cítricos peruanos, especialmente de mandarinas sin semillas. Agraria.pe Agencia Agraria de Noticias. https://agraria.pe/noticias/hemos-observado-una-fuerte-demanda-de-citricos-peruanos-espe-31885
Almaraz Sanchez., A., Ayala Escobar, V., Tlatilpa Santamaría, I. F., & Nieto Angel, D. (2019). Fusarium sambucinum Fuckel agente causal de la pudrición de frutos de chile manzano (Capsicum pubescens) en México. Revista Mexicana de Fitopatología, 37(1), 159–169. https://doi.org/10.18781/r.mex.fit.1810-2
Apolonio-Rodríguez, I., Franco-Mora, O., Salgado-Siclán, M. L., & Aquino-Martínez, J. G. (2017). Inhibición in vitro de Botrytis cinerea con extractos de hojas de vid silvestre (Vitis spp.). Revista Mexicana de Fitopatología, 35(2), 170–185. https://doi.org/10.18781/r.mex.fit.1611-1
Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (3rd ed.). Macmillan Publishing Company.
Barron, G. L. (1968). The genera of Hyphomycetes from soil. Williams and Wilkins Co.
Cocco, M., Vázquez, D. E., Albors, A., Cháfer, M., Meier, G. E., & Bello, F. (2008). Combinación de tratamientos térmicos y bicarbonato de sodio para el control de Penicillium digitatum en frutos cítricos. Revista Iberoamericana de Tecnología Postcosecha, 9(1), 55–62.
Costa, J. H., Wassano, C. I., Figueiredo Angolini, C. F., Scherlach, K., Hertweck, C., & Pacheco Fill, T. (2019). Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Scientific Reports, 9(1), Article 18647. https://doi.org/10.1038/s41598-019-55204-9
Deshmukh, S. K., Gupta, M. K., Prakash, V., & Saxena, S. (2018). Endophytic fungi: A source of potential antifungal compounds. Journal of Fungi, 4, Article 77. https://doi.org/10.3390/jof4030077
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2008). InfoStat software estadístico, Manual del usuario: Vol. Grupo Infostad (1.1). Universidad Nacional de Córdoba.
Gómez de Membrillera, J. G. (1950). Clave determinativa de las especies del género Penicillium. En: Universidad de Murcia (Ed.), Anales de la la Universidad de Murcia (pp. 417–524). Universidad de Murcia. http://hdl.handle.net/10201/6407
Gupta, S., & Saxena, S. (2023). Endophytes: Saviour of apples from post-harvest fungal pathogens. Biological Control, 182, Article 105234. https://doi.org/10.1016/j.biocontrol.2023.105234
Hussain, H., Drogies, K. -H., Al-Harrasi, A., Hassan, Z., Shah, A., Rana, U. A., Green, I. R., Draeger, S., Schulz, B., & Krohn, K. (2015). Antimicrobial constituents from endophytic fungus Fusarium sp. Asian Pacific Journal of Tropical Disease, 5(3), 186–189. https://doi.org/10.1016/S2222-1808(14)60650-2
Khare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted interactions between endophytes and plant: Developments and pospects. Frontiers in Microbiology, 9, Article 2732. https://doi.org/10.3389/fmicb.2018.02732
Leon Ttacca, B., Astete Farfán, A., Mattos Calderón, L. L., & Arévalo Gardini, E. (2022). Endophytic mycobiota associated to plants of Vaccinium corymbosum L. in Cañete valley- Perú. Revista de La Facultad de Agronomía de La Universidad Del Zulia, 39(1), Article 223922. https://produccioncientificaluz.org/index.php/agronomia/article/view/37793
Leon-Ttacca, B., Yactayo-Yataco, R. J., Astete-Farfán, A., Mattos-Calderón, L. L., & Arestegui-Cantoral, J. C. (2022). antibiosis y micoparasitismo de hongos endófitos sobre el agente causal del moho gris. Bioagro, 34(2), 209–220. http://www.doi.org/10.51372/bioagro343.1
Li, Y., Xia, M., He, P., Yang, Q., Wu, Y., He, P., Ahmed, A., Li, X., Wang, Y., Munir, S., & He, Y. (2022). Developing Penicillium digitatum management strategies on post-harvest citrus fruits with metabolic components and colonization of Bacillus subtilis L1-21. Journal of Fungi, 8(1), Article 80. https://doi.org/10.3390/jof8010080
McBrien, K. D., Gao, Q., Huang, S., Klohr, S. E., Wang, R. R., Pirnik, D. M., Neddermann, K. M., Bursuker, I., Kadow, K. F., & Leet, J. E. (1996). Fusaricide, a new cytotoxic N-Hydroxypyridone from Fusarium sp. Journal of Natural Products, 59(12), 1151–1153. https://doi.org/10.1021/np960521t
Ministerio de Agricultura. (2023). Cítricos: Perú un campo fértil para sus inversiones. https://www.midagri.gob.pe/portal/download/pdf/herramientas/organizaciones/dgca/citricos.pdf
Nicoletti, R., & Fiorentino, A. (2015). Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture, 5(4), 918–970. https://doi.org/10.3390/agriculture5040918
Segaran, G., & Sathiavelu, M. (2019). Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agricultural Biotechnology, 21, Article 101284. https://doi.org/10.1016/j.bcab.2019.101284
Talibi, I., Boubaker, H., Boudyach, E. H., & Ait Ben Aoumar, A. (2014). Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology, 117(1), 1–17. https://doi.org/10.1111/jam.12495
Wang, Z., Sui, Y., Li, J., Tian, X., & Wang, Q. (2022). Biological control of postharvest fungal decays in Citrus: A review. Critical Reviews in Food Science and Nutrition, 62(4), 861–870. https://doi.org/10.1080/10408398.2020.1829542
Wu, G. A., Terol, J., Ibanez, V., López-García, A., Pérez-Román, E., Borredá, C., Domingo, C., Tadeo, F. R., Carbonell-Caballero, J., Alonso, R., Curk, F., Du, D., Ollitrault, P., Roose, M. L., Dopazo, J., Gmitter, F. G., Rokhsar, D. S., & Talon, M. (2018). Genomics of the origin and evolution of Citrus. Nature, 554, 311–316. https://doi.org/10.1038/nature25447
Xu, M., Huang, Z., Zhu, W., Liu, Y., Bai, X., & Zhang, H. (2023). Fusarium-derived secondary metabolites with antimicrobial effects. Molecules, 28(8), Article 3424. https://doi.org/10.3390/molecules28083424
Zhang, J., He, L., Guo, C., Liu, Z., Kaliaperumal, K., Zhong, B., & Jiang, Y. (2022). Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum. Fungal Biology, 126(3), 201–212. https://doi.org/10.1016/j.funbio.2021.12.006
Zhang, R., Yin, J., Sui, Z., Han, L., Li, Y., & Huang, J. (2022). Biocontrol of antifungal volatiles produced by Ceriporia lacerate HG2011 against citrus fruit rot incited by Penicillium spp. Postharvest Biology and Technology, 194, Article 112094. https://doi.org/10.1016/j.postharvbio.2022.112094
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Betsabe León-Ttacca, Yasmin Arestegui-Cantoral, Brandy Tarula-Gutierrez, Cesar Orellana-Cornejo, Jorge Luis-Vilcamiza, Pedro Flores-Pelaes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).