Effect of Bacillus megaterium on strawberry crop
DOI:
https://doi.org/10.15517/am.2024.59611Keywords:
biological control, control methods, biopesticides, BotrytisAbstract
Introduction. In Ecuador, strawberry cultivation holds significant economic and social importance, having witnessed substantial growth in recent years. However, this sector faces challenges from various pests and diseases. Objective. To evaluate the effect of Bacillus megaterium on strawberry crop variables related to plant health and agronomic yield. Materials and methods. Field trial was conducted on the Albion variety of strawberries, four months after the first harvest, in Pichincha province, Ecuador. Using IB6 and AB4 strains of Bacillus megaterium at concentrations of 1x109 y 5 x108 cfu/L. These were compared with a chemical control using captan (3 g/L) and chlorothalonil (2 mL/L) as fungicides, and abamectin (0.75 mL/L) and lambdacyhalothrin (0.3 mL/L) as insecticides in rotation. A split-plot design with evaluations conducted at two intervals between April and June 2023. Variables measured included Botrytis cinerea incidence and severity index, fresh weight, yield, diameters, and Brix degrees of fruits. Results. There was no interaction between the factor showed no statistical difference for variables of health and agronomic interest, the incidence of B. cinereal in the biological treatments was the lowest with 13 % on average, the control of mites was 72.71 % higher with strain IB6 high concentration this same treatment, showed significant increases in the fresh weight of fruits (13.2 %), diameters (14 %), and soluble solids concentration (23 %) higher than the control. Conclusion. The use of Bacillus megaterium reduced the incidence of Botrytis cinereal, effective control against mites and thrips, improved fresh weight, diameters and Brix degrees of fruits.
Downloads
References
Acurio, R., Ñacato, C., & Valencia, M. (2018). Native strains of Bacillus subtilis as a biocontrol agent in vitro Alternaria spp. in Brassica oleracea var. italica. Bionatura, 3(2), 607–611. https://doi.org/10.21931/RB/2018.03.02.8
Acurio Vásconez, R. D., Tenorio Moya, E. M., Collaguazo Yépez, L. A., Chiluisa-Utreras, V. P., & Vaca Suquillo, I. D. (2020). Evaluation of Bacillus megaterium strain AB4 as a potential biocontrol agent of Alternaria japonica, a mycopathogen of Brassica oleracea var. italica. Biotechnology Reports, 26, Article e00454. https://doi.org/10.1016/j.btre.2020.e00454
Badar, M. A., Mehmood, K., Hassan, I., Ahmed, M., Ahmad, I., Ahmad, N., & Hasan, M. U. (2022). Plant growth promoting bacteria (pgpb) enhance growth and yield of strawberry cultivars. Applied Ecology and Environmental Research, 20(3), 2187–2203. https://doi.org/10.15666/aeer/2003_21872203
Barrazueta-Rojas, S. G., Falconí, J. F., Navarro Ojeda, M. N., Oleas-López, J. M., & Mendoza-Zurita, G. X. (2018). Pysicochemical properties and application of edible coatings in strawberry Fragaria × Ananassa) preservation. Revista Facultad Nacional de Agronomia Medellin, 71(3), 8631–8641.
Benavides, Á., Cisne, J., Morán, J., & Duarte, H. (2022). Producción orgánica de fresa (Fragaria spp.), las Sabanas, Madriz, Nicaragua. Universidad Nacional Agraria, Managua.
Benítez-Díaz, P., Miranda-Contreras, L., Balza-Quintero, A., Sánchez-Gil, B., & Molina-Morales, Y. (2015). Residuos de plaguicidas en fresa (Fragraria x ananassa) cosechada en una región agrícola del estado de Mérida, Venezuela. Bioagro, 27(3), 181–188. http://www.ucla.edu.ve/bioagro/Rev27(3)/7.%20ms%201525.pdf
Bustamante Salgado, M. R. (2015). Obtención y evaluación in vitro de metabolitos secundarios de dos cepas de Bacillus subtilis contra el hongo fitopatógeno Fusarium spp [Tesis de pregrado, Escuela Agrícola Panamericana]. Repositorio digital-Zamorano. https://bdigital.zamorano.edu/handle/11036/4551
Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., Ongena, M. (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol. Mar;8(2):281-95. https://doi.org/10.1111/1751-7915.12238.
Correa Londoño, G. (2004). Análisis de medidas repetidas (1ª ed.). Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/3150
da Silva, L. I., Pereira de Oliveira, I., da Conceição Jesus, E., Corrêa Pereira, M., Pasqual, M., de Araújo, R. C., & Dória, J. (2022). Fertilizer of the future: Beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy, 12(10), Article 2465. https://doi.org/10.3390/agronomy12102465
del Puerto Rodríguez, A. M., Suárez Tamayo, S., & Palacio Estrada, D. E. (2014). Effects of pesticides on health and the environment. Revista Cubana de Higiene y Epidemiología, 52(3), 372-387. https://revepidemiologia.sld.cu/index.php/hie/article/view/329
Elnahal, A. S. M., El-Saadony, M. T., Saad, A. M., Desoky, E-S. M., El-Tahan, A. M., Rady, M. M., AbuQamar, S. F., & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 62(4), 759–792. https://doi.org/10.1007/s10658-021-02393-7
Feliziani, E., Landi, L., & Romanazzi, G. (2015). Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers, 132, 111–117. https://doi.org/10.1016/j.carbpol.2015.05.078
Gadhave, K. R., Finch, P., Gibson, T. M., & Gange, A. C. (2016). Plant growth-promoting Bacillus suppress Brevicoryne brassicae field infestation and trigger density-dependent and density-independent natural enemy responses. Journal of Pest Science, 89(4), 985–992. https://doi.org/10.1007/s10340-015-0721-8
García, C., Albendi, G., & Molina, J. M. (2012). Potencial de uso de extractos vegetales disponibles comercialmente en el manejo integrado de plagas de la fresa. Boletín de Sanidad Vegetal. Plagas, 38, 223–232. https://www.mapa.gob.es/ministerio/pags/Biblioteca/Revistas/pdf_Plagas%2FBSVP_38_02_223_232.pdf
Gravel, A., & Naasz, R. (2019). Development of new insect suppression solutions for greenhouse production. ISHS Acta Horticulturae, 1266, 121–128. https://doi.org/10.17660/ActaHortic.2019.1266.17
Hashem, A., Tabassum, B., & Abd-Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Instituto Geográfico Militar. (2013). Cantón Mejía. Generación de geoinformación para gestión del territorio a nivel nacional escala 1:25.000. Clima e Hidrología. Ministerio de Defensa Nacional, Instituo Espacial Ecuatoriano, & Secretaría Nacional de Planificación y Desarrollo. https://www.geoportaligm.gob.ec/descargas_prueba/mejia.html
Koike, S. T., & Bolda, M. (2016). El moho gris, o pudrición de fresa. Comisión de la Fresa de Californi. https://ucanr.edu/blogs/fresamora/blogfiles/37849.pdf
Llanes Echevarría, R. J. (2017). Alimentos hipolipemiantes que mejoran la salud cardiovascular. Revista Cubana de Cardiología y Cirugía Cardiovascular, 23(4), 549–582. https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/708/pdf_110
Makris, G., Nikoloudakis, N., Samaras, A., Karaoglanidis, G. S., & Kanetis, L. I. (2022). Under pressure: A comparative study of Botrytis cinerea populations from conventional and organic farms in Cyprus and Greece. Phytopathology, 112(10), 2236–2247. https://doi.org/10.1094/PHYTO-12-21-0510-R
Merchán-Gaitán, J. B., Ferrucho, R. L., & Álvarez-Herrera, J. G. (2014). Efecto de dos cepas de Trichoderma en el control de Botrytis cinerea y la calidad del fruto en fresa (Fragaria sp.). Revista Colombiana de Ciencias Hortícolas, 8(1), 44–56. https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/2799/2566
Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125. https://doi.org/10.1016/j.tim.2007.12.009
Pazarlar, S., Madriz-Ordeñana, K., & Thordal-Christensen, H. (2022). Bacillus cereus EC9 protects tomato against Fusarium wilt through JA/ET-activated immunity. Frontiers in Plant Science, 13, Article 1090947. https://doi.org/10.3389/fpls.2022.1090947
Petrasch, S., Knapp, S. J., van Kan, J. A., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877–892. https://doi.org/10.1111/mpp.12794
Kumar, P., Pandhi, S., Kumar Mahato, D., Kamle, M. & Mishra, A., (2021). Bacillus-based nano-bioformulations for phytopathogens and insect–pest management. Egyptian Journal of Biological Pest Control, 31(1), Article 128. https://doi.org/10.1186/s41938-021-00475-6
Silva, V., Yang, X., Fleskens, L., Ritsema, J. C., & Geissen, V. (2022). Environmental and human health at risk Scenarios to achieve the Farm to Fork 50% pesticide reduction goals. Environment International, Article165. https://doi.org/10.1016/j.envint.2022.107296
Torres, T. S., Allepuz Capdevilla, R., & Gordo Márquez, M. (2014). La contratación de mano de obra temporal en la Agricultura hortofrutícola españolas. Revista científica sobre desarrollo rural, (16), 7–37. http://ruralager.org/wp-content/uploads/Ager-16_1.pdf
Valenzuela Ruiz, V., Gálvez Gamboa, G.T., Villa Rodríguez, E.D., Parra Cota, F. I., Santoyo, G., & De Los Santos-Villalobos, S. (2020). Lipopéptidos producidos por agentes de control biológico del género Bacillus: revisión de herramientas analíticas utilizadas para su estudio. Revista Mexicana de Ciencias Agrícolas, 2(11), Artículo 2191. https://doi.org/10.29312/remexca.v11i2.2191
Vargas-Rojas, J. C., Vargas-Martínez, A., & Corrales-Brenes, E. (2023). Experimentos agrícolas con medidas repetidas en el tiempo: comparación entre estrategias de análisis. Agronomía Mesoamericana, 34(2), Artículo 52634.https://doi.org/10.15517/am.v34i2.52634
Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & De los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1), 95-130. https://doi.org/10.18781/r.mex.fit.1706-5
Wang, Y., Liang, J., Zhang, C., Wang, L., Gao, W., & Jiang, J. (2020). Bacillus megaterium WL-3 Lipopeptides Collaborate Against Phytophthora infestans to Control Potato Late Blight and Promote Potato Plant Growth. Frontiers in Microbiology, (11), Article 01602. https://doi.org/10.3389/fmicb.2020.01602
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ramiro Daniel Acurio-Vásconez, Judith Josefina García-Bolívar
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).